Machine Learning-Based Pre-impact Fall Detection and Injury Prevention for the Elderly with Wearable Inertial Sensors

Author(s):  
Xiaoqun Yu ◽  
Jaehyuk Jang ◽  
Shuping Xiong
2021 ◽  
Vol 13 ◽  
Author(s):  
Xiaoqun Yu ◽  
Jaehyuk Jang ◽  
Shuping Xiong

Research on pre-impact fall detection with wearable inertial sensors (detecting fall accidents prior to body-ground impacts) has grown rapidly in the past decade due to its great potential for developing an on-demand fall-related injury prevention system. However, most researchers use their own datasets to develop fall detection algorithms and rarely make these datasets publicly available, which poses a challenge to fairly evaluate the performance of different algorithms on a common basis. Even though some open datasets have been established recently, most of them are impractical for pre-impact fall detection due to the lack of temporal labels for fall time and limited types of motions. In order to overcome these limitations, in this study, we proposed and publicly provided a large-scale motion dataset called “KFall,” which was developed from 32 Korean participants while wearing an inertial sensor on the low back and performing 21 types of activities of daily living and 15 types of simulated falls. In addition, ready-to-use temporal labels of the fall time based on synchronized motion videos were published along with the dataset. Those enhancements make KFall the first public dataset suitable for pre-impact fall detection, not just for post-fall detection. Importantly, we have also developed three different types of latest algorithms (threshold based, support-vector machine, and deep learning), using the KFall dataset for pre-impact fall detection so that researchers and practitioners can flexibly choose the corresponding algorithm. Deep learning algorithm achieved both high overall accuracy and balanced sensitivity (99.32%) and specificity (99.01%) for pre-impact fall detection. Support vector machine also demonstrated a good performance with a sensitivity of 99.77% and specificity of 94.87%. However, the threshold-based algorithm showed relatively poor results, especially the specificity (83.43%) was much lower than the sensitivity (95.50%). The performance of these algorithms could be regarded as a benchmark for further development of better algorithms with this new dataset. This large-scale motion dataset and benchmark algorithms could provide researchers and practitioners with valuable data and references to develop new technologies and strategies for pre-impact fall detection and proactive injury prevention for the elderly.


Author(s):  
Nishanth P

Falls have become one of the reasons for death. It is common among the elderly. According to World Health Organization (WHO), 3 out of 10 living alone elderly people of age 65 and more tend to fall. This rate may get higher in the upcoming years. In recent years, the safety of elderly residents alone has received increased attention in a number of countries. The fall detection system based on the wearable sensors has made its debut in response to the early indicator of detecting the fall and the usage of the IoT technology, but it has some drawbacks, including high infiltration, low accuracy, poor reliability. This work describes a fall detection that does not reliant on wearable sensors and is related on machine learning and image analysing in Python. The camera's high-frequency pictures are sent to the network, which uses the Convolutional Neural Network technique to identify the main points of the human. The Support Vector Machine technique uses the data output from the feature extraction to classify the fall. Relatives will be notified via mobile message. Rather than modelling individual activities, we use both motion and context information to recognize activities in a scene. This is based on the notion that actions that are spatially and temporally connected rarely occur alone and might serve as background for one another. We propose a hierarchical representation of action segments and activities using a two-layer random field model. The model allows for the simultaneous integration of motion and a variety of context features at multiple levels, as well as the automatic learning of statistics that represent the patterns of the features.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 360-381
Author(s):  
Matthew T. O. Worsey ◽  
Hugo G. Espinosa ◽  
Jonathan B. Shepherd ◽  
David V. Thiel

Machine learning is a powerful tool for data classification and has been used to classify movement data recorded by wearable inertial sensors in general living and sports. Inertial sensors can provide valuable biofeedback in combat sports such as boxing; however, the use of such technology has not had a global uptake. If simple inertial sensor configurations can be used to automatically classify strike type, then cumbersome tasks such as video labelling can be bypassed and the foundation for automated workload monitoring of combat sport athletes is set. This investigation evaluates the classification performance of six different supervised machine learning models (tuned and untuned) when using two simple inertial sensor configurations (configuration 1—inertial sensor worn on both wrists; configuration 2—inertial sensor worn on both wrists and third thoracic vertebrae [T3]). When trained on one athlete, strike prediction accuracy was good using both configurations (sensor configuration 1 mean overall accuracy: 0.90 ± 0.12; sensor configuration 2 mean overall accuracy: 0.87 ± 0.09). There was no significant statistical difference in prediction accuracy between both configurations and tuned and untuned models (p > 0.05). Moreover, there was no significant statistical difference in computational training time for tuned and untuned models (p > 0.05). For sensor configuration 1, a support vector machine (SVM) model with a Gaussian rbf kernel performed the best (accuracy = 0.96), for sensor configuration 2, a multi-layered perceptron neural network (MLP-NN) model performed the best (accuracy = 0.98). Wearable inertial sensors can be used to accurately classify strike-type in boxing pad work, this means that cumbersome tasks such as video and notational analysis can be bypassed. Additionally, automated workload and performance monitoring of athletes throughout training camp is possible. Future investigations will evaluate the performance of this algorithm on a greater sample size and test the influence of impact window-size on prediction accuracy. Additionally, supervised machine learning models should be trained on data collected during sparring to see if high accuracy holds in a competition setting. This can help move closer towards automatic scoring in boxing.


2021 ◽  
Vol 12 ◽  
Author(s):  
John M. Franchak ◽  
Vanessa Scott ◽  
Chuan Luo

How can researchers best measure infants' motor experiences in the home? Body position—whether infants are held, supine, prone, sitting, or upright—is an important developmental experience. However, the standard way of measuring infant body position, video recording by an experimenter in the home, can only capture short instances, may bias measurements, and conflicts with physical distancing guidelines resulting from the COVID-19 pandemic. Here, we introduce and validate an alternative method that uses machine learning algorithms to classify infants' body position from a set of wearable inertial sensors. A laboratory study of 15 infants demonstrated that the method was sufficiently accurate to measure individual differences in the time that infants spent in each body position. Two case studies showed the feasibility of applying this method to testing infants in the home using a contactless equipment drop-off procedure.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 284
Author(s):  
José Antonio Santoyo-Ramón ◽  
Eduardo Casilari ◽  
José Manuel Cano-García

In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5134
Author(s):  
Sara Usmani ◽  
Abdul Saboor ◽  
Muhammad Haris ◽  
Muneeb A. Khan ◽  
Heemin Park

Falls are unusual actions that cause a significant health risk among older people. The growing percentage of people of old age requires urgent development of fall detection and prevention systems. The emerging technology focuses on developing such systems to improve quality of life, especially for the elderly. A fall prevention system tries to predict and reduce the risk of falls. In contrast, a fall detection system observes the fall and generates a help notification to minimize the consequences of falls. A plethora of technical and review papers exist in the literature with a primary focus on fall detection. Similarly, several studies are relatively old, with a focus on wearables only, and use statistical and threshold-based approaches with a high false alarm rate. Therefore, this paper presents the latest research trends in fall detection and prevention systems using Machine Learning (ML) algorithms. It uses recent studies and analyzes datasets, age groups, ML algorithms, sensors, and location. Additionally, it provides a detailed discussion of the current trends of fall detection and prevention systems with possible future directions. This overview can help researchers understand the current systems and propose new methodologies by improving the highlighted issues.


Sign in / Sign up

Export Citation Format

Share Document