Residual Stress Induced by Laser Welding of Interstitial Free (IF) Steel: Simulation Approach

2021 ◽  
pp. 235-242
Author(s):  
Arfaoui Latifa ◽  
Amel Samet ◽  
Amna Znaidi
2001 ◽  
Vol 7 (S2) ◽  
pp. 508-509
Author(s):  
W. Regone ◽  
A. M. 𝚓orge Júnior ◽  
O. Balancin

Upon hot strip mill of titanium Interstitial Free (IF) steels, during cooling from austenite to ferrite region, the level of interstitial elements not removed by steelmaking process is dropped down by Ti that combines with N, C and S. Some authors [1-3] have reported that the traditional precipitation sequence TiN, TiS, Ti4C2S2 and TiC occurs with freestanding particles formed by nucleation and growth processes. Other authors [4] have indicated that the transformation from TiS to Ti4C2S2 may be considered as a hybrid of shear and diffusion, i.e., faulted Ti8S9 (9R) + 10[Ti] + 9[C] → 41/2Ti4C2S2 (or H for its hexagonal crystal structure). At low temperature (≤930°C), the stabilization process continues through epitaxial growth of carbides on H phase. to study the evolution of precipitation upon hot strip mill conditions, samples of a Ti - IF steel were subjected to double straining tests [5] by means of a computerized hot torsion machine, at 1000 °C and 920 °C, with strain rate of 1 s-1 and interpass times ranging from 0.5 to 100 s.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1473
Author(s):  
Hao Wang ◽  
Yanping Bao ◽  
Chengyi Duan ◽  
Lu Lu ◽  
Yan Liu ◽  
...  

The influence of rare earth Ce on the deep stamping property of high-strength interstitial-free (IF) steel containing phosphorus was analyzed. After adding 120 kg ferrocerium alloy (Ce content is 10%) in the steel, the inclusion statistics and the two-dimensional morphology of the samples in the direction of 1/4 thickness of slab and each rolling process were observed and compared by scanning electron microscope (SEM). After the samples in each rolling process were treated by acid leaching, the three-dimensional morphology and components of the second phase precipitates were observed by SEM and energy dispersive spectrometer (EDS). The microstructure of the sample was observed by optical microscope, and the grain size was compared. Meanwhile, the content and strength of the favorable texture were analyzed by X-ray diffraction (XRD). Finally, the mechanical properties of the product were analyzed. The results showed that: (1) The combination of rare earth Ce with activity O and S in steel had lower Gibbs free energy, and it was easy to generate CeAlO3, Ce2O2S, and Ce2O3. The inclusions size was obviously reduced, but the number of inclusions was increased after adding rare earth. The morphology of inclusions changed from chain and strip to spherical. The size of rare earth inclusions was mostly about 2–5 μm, distributed and dispersed, and their elastic modulus was close to that of steel matrix, which was conducive to improving the structure continuity of steel. (2) The rare earth compound had a high melting point. As a heterogeneous nucleation point, the nucleation rate was increased and the solidification structure was refined. The grade of grain size of products was increased by 1.5 grades, which is helpful to improve the strength and plasticity of metal. (3) Rare earth Ce can inhibit the segregation of P element at the grain boundary and the precipitation of Fe(Nb+Ti)P phase. It can effectively increase the solid solution amount of P element in steel, improve the solid solution strengthening effect of P element in high-strength IF steel, and obtain a large proportion of {111} favorable texture, which is conducive to improving the stamping formability index r90 value.


2011 ◽  
Vol 702-703 ◽  
pp. 615-618
Author(s):  
Dong Kyu Kim ◽  
K.H. Jung ◽  
H.W. Lee ◽  
Yong Taek Im

A two dimensional probabilistic cellular automata model is used to simulate primary static recrystallization of interstitial free (IF) steel. The present study is to investigate the effect of curvature-driven pressure that is induced by protrusions/retrusions of recrystallization fronts on the microstructural and textural evolution during recrystallization. It was found that local interface migration of protrusions/retrusions of recrystallization fronts could significantly affect the kinetics, grain morphology and annealing texture according to the present investigation.


2004 ◽  
Vol 467-470 ◽  
pp. 341-348 ◽  
Author(s):  
Nobuhiro Tsuji ◽  
Naoya Kamikawa ◽  
Yoritoshi Minamino

Ultra low-carbon interstitial free (IF) steel having ferrite (b.c.c.) single phase was deformed to various equivalent strains ranging from 0.8 to 5.6 by the accumulative roll bonding (ARB) process at 500°C. The microstructure and crystallographic feature of the deformed specimens were characterized mainly by FE-SEM/EBSD analysis. Grain subdivision during the plastic deformation up to very high strain was clarified quantitatively. After heavy deformation above 4.0 of strain, the specimens showed the lamellar boundary structure uniformly, in which the mean spacing of the lamellar boundaries was about 200nm and more than 80% of the boundaries were high-angle ones. Annealing behavior of the ARB processed IF steel strongly depended on the strain. The specimens deformed to medium strains exhibited discontinuous recrystallization characterized by nucleation and growth, while the specimens deformed above strain of 4.0 showed continuous recrystallization. The recrystallization behaviors are discussed on the basis of the microstructural and crystallographic parameters quantitatively measured in the as-deformed samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Saeed Tamimi ◽  
Mostafa Ketabchi ◽  
Nader Parvin ◽  
Mehdi Sanjari ◽  
Augusto Lopes

Severe plastic deformation is a new method to produce ultrafine grain materials with enhanced mechanical properties. The main objective of this work is to investigate whether accumulative roll bonding (ARB) is an effective grain refinement technique for two engineering materials of pure copper and interstitial free (IF) steel strips. Additionally, the influence of severely plastic deformation imposed by ARB on the mechanical properties of these materials with different crystallographic structure is taken into account. For this purpose, a number of ARB processes were performed at elevated temperature on the materials with 50% of plastic deformation in each rolling pass. Hardness of the samples was measured using microhardness tests. It was found that both the ultimate grain size achieved, and the degree of bonding depend on the number of rolling passes and the total plastic deformation. The rolling process was stopped in the 4th cycle for copper and the 10th cycle for IF steel, until cracking of the edges became pronounced. The effects of process temperature and wire-brushing as significant parameters in ARB process on the mechanical behaviour of the samples were evaluated.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jose Luis Reyes Barragan ◽  
Roberto Ademar Rodriguez Diaz ◽  
Maria Luisa Ojeda Martinez ◽  
Silvia Gaona Jimenez ◽  
Julio Alberto Juarez Islas

In this study, we investigated the recrystallisation kinetics of Ti-stabilised interstitial-free (IF) steel manufactured by the Mexican steel industry through the route of electric arc furnace with vacuum degassing, secondary refining, and subsequent continuous casting. The IF steel was hot-rolled at 950°C and then cold-rolled until deformation of 94% was attained, followed by recrystallisation at different times at a constant temperature of 780°C. In addition, the mechanical properties of the IF steel were assessed as a function of recrystallisation time. The results obtained from the mechanical property tests were presented in the form of plots of microhardness, yield strength, ultimate tensile stress, and deformation percent as functions of the recrystallised fraction with an indirect dependence on recrystallisation time. A graphical model of the recrystallisation behaviour showed the evolution of the microstructure, including phase transformations, hardness, and the mechanical properties determined from the tensile tests. In view of subsequent recovery and recrystallisation, stored energy analysis derived from the strain induced by deformation was presented. Furthermore, we determined the precipitates formed in the different processing stages of IF steel.


Sign in / Sign up

Export Citation Format

Share Document