Post-buckling Behavior of Carbon Nanotube-Reinforced FG Plates Using a HOSDT-Based Solid-Shell Element

2021 ◽  
pp. 334-339
Author(s):  
E. Chebbi ◽  
A. Hajlaoui ◽  
Fakhreddine Dammak
2011 ◽  
Vol 11 (05) ◽  
pp. 877-902 ◽  
Author(s):  
P. B. DINIS ◽  
D. CAMOTIM

This paper reports the results of a numerical investigation concerning the elastic and elastic-plastic post-buckling behavior of cold-formed steel-lipped channel columns affected by local/distortional/global (flexural-torsional) buckling mode interaction. The results presented and discussed are obtained by means of analyses performed in the code ABAQUS and adopting column discretizations into fine four-node isoparametric shell element meshes. The columns analysed (i) are simply supported (locally/globally pinned end sections with free warping), (ii) have cross-section dimensions and lengths ensuring equal local, distortional, and global (flexural-torsional) critical buckling loads, thus maximizing the mode interaction phenomenon under scrutiny, and (iii) contain critical-mode initial geometrical imperfections exhibiting different configurations, all corresponding to linear combination of the three "competing" critical buckling modes. After briefly addressing the lipped channel column "pure" global post-buckling behavior, one presents and discusses in detail numerical results concerning the post-buckling behavior of similar columns experiencing strong local/distortional/global mode interaction effects. These results consist of (i) elastic (mostly) and elastic-plastic equilibrium paths, (ii) curves and figures providing the evolution of the deformed configurations of several columns (expressed as linear combinations of their local, distortional, and global components) and, for the elastic-plastic columns, (iii) figures enabling a clear visualization of (iii1) the location and growth of the plastic strains, and (iii2) the characteristics of the failure mechanisms more often detected in this work.


1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


1986 ◽  
Vol 108 (2) ◽  
pp. 131-137
Author(s):  
D. Moulin

This paper presents a simplified method to analyze the buckling of thin structures like those of Liquid Metal Fast Breeder Reactors (LMFBR). The method is very similar to those used for the buckling of beams and columns with initial geometric imperfections, buckling in the plastic region. Special attention is paid to the strain hardening of material involved and to possible unstable post-buckling behavior. The analytical method uses elastic calculations and diagrams that account for various initial geometric defects. An application of the method is given. A comparison is made with an experimental investigation concerning a representative LMFBR component.


2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


Sign in / Sign up

Export Citation Format

Share Document