Design for New Materials and New Manufacturing Technologies

Author(s):  
Pedro Oliveira ◽  
Valentina Rognoli ◽  
Markus Holzbach
Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 842
Author(s):  
Principia Dardano ◽  
Maria Antonietta Ferrara

With the aim to take advantage from the existing technologies in microelectronics, photodetectors should be realized with materials compatible with them ensuring, at the same time, good performance. Although great efforts are made to search for new materials that can enhance performance, photodetector (PD) based on them results often expensive and difficult to integrate with standard technologies for microelectronics. For this reason, the group IV semiconductors, which are currently the main materials for electronic and optoelectronic devices fabrication, are here reviewed for their applications in light sensing. Moreover, as new materials compatible with existing manufacturing technologies, PD based on colloidal semiconductor are revised. This work is particularly focused on developments in this area over the past 5–10 years, thus drawing a line for future research.


2019 ◽  
Vol 4 (1) ◽  
pp. 246-253
Author(s):  
Dániel Szabó

Additive Manufacturing has been invented in 1981 at the University of Texas, and to this day it has grown to be the most versatile and promising manufacturing technology in the market, both the industry and health care system has noticed this. Additive Bio-Manufacturing (ABM) techniques, which can be used in health care, are highly in demand, and researches have been going on to make these technologies safer and even more versatile. For more utilization and versatility, special attention is required to develop new materials which can help in increasing the service life, bioactivity, cell growth along with the desired mechanical properties, and to find the right manufacturing parameters for creating optimal products. The aim of this review is to present the available main Additive Manufacturing technologies, and particularly the biomedical usability of Additive Manufacturing.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


1936 ◽  
Vol 15 (12) ◽  
pp. 686
Author(s):  
Hodgson ◽  
Johnson ◽  
Skipper ◽  
Wilcock ◽  
Bailey ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document