Application of Traditional Machine Learning Models to Detect Abnormal Traffic in the Internet of Things Networks

2021 ◽  
pp. 735-744
Author(s):  
Evgeniya Istratova ◽  
Mikhail Grif ◽  
Dmitry Dostovalov
2020 ◽  
Vol 12 (16) ◽  
pp. 6434 ◽  
Author(s):  
Corey Dunn ◽  
Nour Moustafa ◽  
Benjamin Turnbull

With the increasing popularity of the Internet of Things (IoT) platforms, the cyber security of these platforms is a highly active area of research. One key technology underpinning smart IoT systems is machine learning, which classifies and predicts events from large-scale data in IoT networks. Machine learning is susceptible to cyber attacks, particularly data poisoning attacks that inject false data when training machine learning models. Data poisoning attacks degrade the performances of machine learning models. It is an ongoing research challenge to develop trustworthy machine learning models resilient and sustainable against data poisoning attacks in IoT networks. We studied the effects of data poisoning attacks on machine learning models, including the gradient boosting machine, random forest, naive Bayes, and feed-forward deep learning, to determine the levels to which the models should be trusted and said to be reliable in real-world IoT settings. In the training phase, a label modification function is developed to manipulate legitimate input classes. The function is employed at data poisoning rates of 5%, 10%, 20%, and 30% that allow the comparison of the poisoned models and display their performance degradations. The machine learning models have been evaluated using the ToN_IoT and UNSW NB-15 datasets, as they include a wide variety of recent legitimate and attack vectors. The experimental results revealed that the models’ performances will be degraded, in terms of accuracy and detection rates, if the number of the trained normal observations is not significantly larger than the poisoned data. At the rate of data poisoning of 30% or greater on input data, machine learning performances are significantly degraded.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2533 ◽  
Author(s):  
Massimo Merenda ◽  
Carlo Porcaro ◽  
Demetrio Iero

In a few years, the world will be populated by billions of connected devices that will be placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with the surrounding environment and users. Many of these devices will be based on machine learning models to decode meaning and behavior behind sensors’ data, to implement accurate predictions and make decisions. The bottleneck will be the high level of connected things that could congest the network. Hence, the need to incorporate intelligence on end devices using machine learning algorithms. Deploying machine learning on such edge devices improves the network congestion by allowing computations to be performed close to the data sources. The aim of this work is to provide a review of the main techniques that guarantee the execution of machine learning models on hardware with low performances in the Internet of Things paradigm, paving the way to the Internet of Conscious Things. In this work, a detailed review on models, architecture, and requirements on solutions that implement edge machine learning on Internet of Things devices is presented, with the main goal to define the state of the art and envisioning development requirements. Furthermore, an example of edge machine learning implementation on a microcontroller will be provided, commonly regarded as the machine learning “Hello World”.


Environments ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 99
Author(s):  
Shun-Yuan Wang ◽  
Wen-Bin Lin ◽  
Yu-Chieh Shu

In this study, a mobile air pollution sensing unit based on the Internet of Things framework was designed for monitoring the concentration of fine particulate matter in three urban areas. This unit was developed using the NodeMCU-32S microcontroller, PMS5003-G5 (particulate matter sensing module), and Ublox NEO-6M V2 (GPS positioning module). The sensing unit transmits data of the particulate matter concentration and coordinates of a polluted location to the backend server through 3G and 4G telecommunication networks for data collection. This system will complement the government’s PM2.5 data acquisition system. Mobile monitoring stations meet the air pollution monitoring needs of some areas that require special observation. For example, an AIoT development system will be installed. At intersections with intensive traffic, it can be used as a reference for government transportation departments or environmental inspection departments for environmental quality monitoring or evacuation of traffic flow. Furthermore, the particulate matter distributions in three areas, namely Xinzhuang, Sanchong, and Luzhou Districts, which are all in New Taipei City of Taiwan, were estimated using machine learning models, the data of stationary monitoring stations, and the measurements of the mobile sensing system proposed in this study. Four types of learning models were trained, namely the decision tree, random forest, multilayer perceptron, and radial basis function neural network, and their prediction results were evaluated. The root mean square error was used as the performance indicator, and the learning results indicate that the random forest model outperforms the other models for both the training and testing sets. To examine the generalizability of the learning models, the models were verified in relation to data measured on three days: 15 February, 28 February, and 1 March 2019. A comparison between the model predicted and the measured data indicates that the random forest model provides the most stable and accurate prediction values and could clearly present the distribution of highly polluted areas. The results of these models are visualized in the form of maps by using a web application. The maps allow users to understand the distribution of polluted areas intuitively.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


2021 ◽  
Vol 19 (3) ◽  
pp. 163
Author(s):  
Dušan Bogićević

Edge data processing represents the new evolution of the Internet and Cloud computing. Its application to the Internet of Things (IoT) is a step towards faster processing of information from sensors for better performance. In automated systems, we have a large number of sensors, whose information needs to be processed in the shortest possible time and acted upon. The paper describes the possibility of applying Artificial Intelligence on Edge devices using the example of finding a parking space for a vehicle, and directing it based on the segment the vehicle belongs to. Algorithm of Machine Learning is used for vehicle classification, which is based on vehicle dimensions.


Sign in / Sign up

Export Citation Format

Share Document