Crash Safety of High-Voltage Powertrain Based Electric Vehicles

2022 ◽  
Author(s):  
Chao Gong
2021 ◽  
Vol 247 ◽  
pp. 114676
Author(s):  
Lu Jin ◽  
Jun Tian ◽  
Shen Gao ◽  
Peng Xie ◽  
Mohsen Akbarzadeh ◽  
...  

Author(s):  
K. Jyotheeswara Reddy ◽  
N. Sudhakar ◽  
S. Saravanan ◽  
B. Chitti Babu

AbstractHigh switching frequency and high voltage gain DC-DC boost converters are required for electric vehicles. In this paper, a new high step-up boost converter (HSBC) is designed for fuel cell electric vehicles (FCEV) applications. The designed converter provides the better high voltage gain compared to conventional boost converter and also reduces the input current ripples and voltage stress on power semiconductor switches. In addition to this, a neural network based maximum power point tracking (MPPT) controller is designed for the 1.26 kW proton exchange membrane fuel cell (PEMFC). Radial basis function network (RBFN) algorithm is used in the neural network controller to extract the maximum power from PEMFC at different temperature conditions. The performance analysis of the designed MPPT controller is analyzed and compared with a fuzzy logic controller (FLC) in MATLAB/Simulink environment.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


Sign in / Sign up

Export Citation Format

Share Document