Generalized Flexible Voltage Pumping Module for Extra High Voltage Gain Converters in Electric Vehicles

Author(s):  
Guidong Zhang ◽  
Haodong Chen ◽  
Shenglong Yu ◽  
Na Jin ◽  
Yun Zhang
Author(s):  
K. Jyotheeswara Reddy ◽  
N. Sudhakar ◽  
S. Saravanan ◽  
B. Chitti Babu

AbstractHigh switching frequency and high voltage gain DC-DC boost converters are required for electric vehicles. In this paper, a new high step-up boost converter (HSBC) is designed for fuel cell electric vehicles (FCEV) applications. The designed converter provides the better high voltage gain compared to conventional boost converter and also reduces the input current ripples and voltage stress on power semiconductor switches. In addition to this, a neural network based maximum power point tracking (MPPT) controller is designed for the 1.26 kW proton exchange membrane fuel cell (PEMFC). Radial basis function network (RBFN) algorithm is used in the neural network controller to extract the maximum power from PEMFC at different temperature conditions. The performance analysis of the designed MPPT controller is analyzed and compared with a fuzzy logic controller (FLC) in MATLAB/Simulink environment.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


Author(s):  
Christophe Raoul Fotso Mbobda ◽  
Alain Moise Dikandé

To provide a high votage conversion ratio, conventional non-isolated DC-DC boost topologies, which have reduced voltage boost capability, have to operate with extremely high duty cycle ratio, higher than 0.9. This paper proposes a DC-DC converter which is mainly based on the narrow range of duty cycle ratio to achieve extra high voltage conversion gain at relatively reduced voltage stress on semiconductors. In addition, it does include any magnetic coupling structure. The structure of the proposed converter combines the new hybrid SEPIC converter and voltage multiplier cells. From the steady-state analysis, this converter has wide conversion ratio and cubic dependence with respect to the duty ratio and then, can increase the output voltage several times more than the conventional and quadratic converters at the same duty cycle ratio. However, the proposed dual-switch cubic SEPIC converter must withstand higher voltage stress on output switches. To overcome this drawback, an extension of the proposed converter is also introduced and discussed. The superiority of the proposed converter is mainly based on its cubic dependence on the duty cycle ratio that allows it to achieve extra high voltage gain at reduced voltage stress on semiconductors. Simulation results are shown and they corroborate the feasibility, practicality and validity of the concepts of the proposed converter.


2021 ◽  
Vol 1964 (5) ◽  
pp. 052016
Author(s):  
L. Annie Isabella ◽  
Y. Alexander Jeevanantham ◽  
Chandla Ellis ◽  
R. Kameshwaran

Author(s):  
Jagabar Sathik Mohamed Ali ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Yongheng Yang ◽  
Yam Siwakoti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document