scholarly journals Design Method of Double-Boost DC/DC Converter with High Voltage Gain for Electric Vehicles

2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.

Author(s):  
Yong-Seng Wong ◽  
Jiann-Fuh Chen ◽  
Kuo-Bin Liu

A high step-up DC-to-DC converter that integrates an isolated transformer and a switched-clamp capacitor is presented in this study. The voltage stress of the main power switch should be clamped to 1/4 V by using the turn ratio and switched-clamp capacitor of an isolated transformer to achieve a high voltage gain. In addition, a passive clamp circuit is employed reduce voltage stress on the main power switch. The energy of the leakage inductor can be recycled by the clamp capacitor because of the passive clamp circuit, thereby improving the power converter efficiency. The converter consists of one isolated transformer, one main switch, three capacitors, and four diodes. Operating principle and steady-state analyses are also discussed. Finally, a 24-V-input voltage to 200-V-output voltage and a 150 W output power prototype converter are fabricated in the laboratory. The maximum efficiency of the converter is 95.1 at 60 W.


2018 ◽  
Vol 225 ◽  
pp. 04002
Author(s):  
Arunkumari Thiyagu ◽  
V. Indragandhi ◽  
Ramani Kannan

This manuscript proposes a novel single switch converter which attains high voltage gain using P and O algorithm. The proposed converter is multilevel with voltage tripler technique. Here the output voltage gain attained is 11 times than the input source. The voltage ripple attained is less compared to other models. The main advantage of the converter is high efficiency, reduced switch loss, high gain and reduction in ripple. The converter attains efficiency of 97.3% at full load condition. The proposed converter is analysed by both Simulink MATALAB and Hardware prototype.


Author(s):  
C. Kumar ◽  
T. Dharma Raj

The solar photovoltaic (PV) source is preferred to be functioned at low voltages. The practical systems such as grid-tied systems require a high output voltage causing a reduction in conversion efficiency. To handle this problem, this paper presents a new nonisolated boost DC–DC converter with a single switch suitable for solar PV applications. This converter comprises dual voltage multiplier (VM) cells, leakage energy recovery scheme, and coupled inductor (CI) techniques to get the desired output voltage from the converter. The double-clamp capacitors are connected to the primary side of the CI. The clamp capacitors can share the current through CI, and it ensures that the leakage inductance energy of CI can be recovered, leading to an expansion in the converter voltage gain and conversion efficiency. In addition, the clamp circuit clamps the voltage stress of the MOSFET switch, and the clamp capacitors will discharge at a specific time to increase the converter gain. A high duty cycle is not necessary for getting a high voltage gain, which avoids the diode reverse recovery issues. The converter can be operated in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM). A 500-W experimental prototype is developed for experimental validation, and the supporting simulation results are presented. The maximum efficiency of the converter is 93.94%, and, at full load, the efficiency is 92.55%.


2014 ◽  
Vol 61 (12) ◽  
pp. 6739-6746 ◽  
Author(s):  
George Cajazeiras Silveira ◽  
Fernando Lessa Tofoli ◽  
Luiz Daniel Santos Bezerra ◽  
Rene Pastor Torrico-Bascope

Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


Author(s):  
K. Jyotheeswara Reddy ◽  
N. Sudhakar ◽  
S. Saravanan ◽  
B. Chitti Babu

AbstractHigh switching frequency and high voltage gain DC-DC boost converters are required for electric vehicles. In this paper, a new high step-up boost converter (HSBC) is designed for fuel cell electric vehicles (FCEV) applications. The designed converter provides the better high voltage gain compared to conventional boost converter and also reduces the input current ripples and voltage stress on power semiconductor switches. In addition to this, a neural network based maximum power point tracking (MPPT) controller is designed for the 1.26 kW proton exchange membrane fuel cell (PEMFC). Radial basis function network (RBFN) algorithm is used in the neural network controller to extract the maximum power from PEMFC at different temperature conditions. The performance analysis of the designed MPPT controller is analyzed and compared with a fuzzy logic controller (FLC) in MATLAB/Simulink environment.


2014 ◽  
Vol 573 ◽  
pp. 83-88
Author(s):  
A. Marikkannan ◽  
B.V. Manikandan ◽  
S. Jeyanthi

The interest toward the application of fuel cells is increasing in the last years mainly due to the possibility of highly efficient decentralized clean energy generation. The output voltage of fuel-cell stacks is generally below 50 V. Consequently, low-power applications with high output voltage require a high gain for proper operation. A zero-voltage-switching (ZVS) dc–dc converter with high voltage gain is proposed for fuel cell as a front-end converter. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The principle of operation and system analysis are presented. Theoretical analysis and simulation result of the proposed converter were verified.


Sign in / Sign up

Export Citation Format

Share Document