Optimization of Wind Turbines Placement in Offshore Wind Farms: Wake Effects Concerns

2021 ◽  
pp. 102-109
Author(s):  
José Baptista ◽  
Filipe Lima ◽  
Adelaide Cerveira
Author(s):  
S. Márquez-Domínguez ◽  
J. D. Sørensen

Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (CoE). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects.


2017 ◽  
Vol 2 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.


2021 ◽  
Author(s):  
Marcus Klose ◽  
Junkan Wang ◽  
Albert Ku

Abstract In the past, most of the offshore wind farms have been installed in European countries. In contrast to offshore wind projects in European waters, it became clear that the impact from earthquakes is expected to be one of the major design drivers for the wind turbines and their support structures in other areas of the world. This topic is of high importance in offshore markets in the Asian Pacific region like China, Taiwan, Japan, Korea as well as parts of the United States. So far, seismic design for wind turbines is not described in large details in existing wind energy standards while local as well as international offshore oil & gas standards do not consider the specifics of modern wind turbines. In 2019, DNV GL started a Joint Industry Project (JIP) called “ACE -Alleviating Cyclone and Earthquake challenges for wind farms”. Based on the project results, a Recommended Practice (RP) for seismic design of wind turbines and their support structures will be developed. It will supplement existing standards like DNVGL-ST-0126, DNVGL-ST-0437 and the IEC 61400 series. This paper addresses the area of seismic load calculation and the details of combining earthquake impact with other environmental loads. Different options of analysis, particularly time-domain simulations with integrated models or submodelling techniques using superelements will be presented. Seismic ground motions using a uniform profile or depth-varying input profile are discussed. Finally, the seismic load design return period is addressed.


Author(s):  
Christine A. Mecklenborg ◽  
Philipp Rouenhoff ◽  
Dongmei Chen

Offshore wind farms in deep water are becoming an attractive prospect for harnessing renewable energy and reducing dependence on fossil fuels. One area of major concern with offshore wind turbines is stability control. The same strong winds that give deep water turbines great potential for energy capture also pose a threat to stability, along with potentially strong wave forces. We examine development of state space controllers for active stabilization of a spar-buoy floating turbine. We investigate linear state feedback with a state observer and evaluate response time and disturbance rejection of decoupled SISO controllers.


2005 ◽  
Vol 98 (2-3) ◽  
pp. 251-268 ◽  
Author(s):  
Merete Bruun Christiansen ◽  
Charlotte B. Hasager

Author(s):  
Simeng Li ◽  
J. Iwan D. Alexander

In this paper, a Genetic Algorithm is used to find optimized spatial configurations of wind turbines in offshore or flat terrain wind farms. The optimization is made by obtaining maximizing power output per unit cost. A wake model which permits the calculation of single wakes, multiple wakes and wake interactions is employed to estimate wind speeds at each turbine for a given external wind distribution function and a given spatial configuration. The optimization is applied to cases of unidirectional wind, variable direction winds and variable wind speed. The placement of a turbine can be set at any location following the approach of Mittal et al. Results are obtained for different spacing limits between turbines and wind farms of different sizes. The results for some patterns of optimized placements of wind turbines are discussed in the context of the wind distributions and the wake model employed.


Formulation of the problem. Ukraine's energy sector is import-dependent, and one of the country’s sustainable development goals until 2030 is to ensure access to affordable, reliable, sustainable and modern energy sources. The wind potential of the mainland of our country has been thoroughly studied, so the focus of our interest is water areas, which are promising for the development of offshore wind energy. Offshore wind farms in Ukraine could improve the environmental situation and considerably contribute to the decarbonization of domestic energy. That is why the study considers the opportunity of offshore wind farms installation in the Sea of Azov. Methods. The analysis of literary and cartographic sources has been carried out. Mathematical methods have been used to calculate energy indicators. Using geoinformation modeling, taking into account limiting factors, suitable for the installation of offshore wind farms areas have been identified in the Sea of Azov. The purpose of the article is to geographically analyze the wind energy potential of the Sea of Azov with further assessment of the suitability of areas for the offshore wind farms location. Results. Our research has shown that the installation of offshore wind farms is appropriate in the Sea of Azov, because many areas are characterized by average annual wind speed above 6 meters per second. The most promising areas are the northern and northeastern coasts, where wind speed at different altitudes ranges from 8 to 9.3 meters per second. At altitudes of 50, 100 and 200 m, under the action of limiting factors, the most promising for offshore wind turbines areas are reduced by 8–22%. As considered limiting factors (territorial waters, nature protection objects, settlements and airports) have identical influence regardless of height, it is more effective to install wind turbines with a tower height of more than 100 m in the waters of the Sea of Azov. Interdisciplinary research is needed for the final answer on the effectiveness of offshore wind turbines in the Sea of Azov. Scientific novelty and practical significance. The results of the analysis of the wind energy potential of the Sea of Azov have been given, the tendency of its growth from the west to the east has been revealed. Attention has been paid to the method of geoinformation modeling of the location of offshore wind farms taking into account limiting factors. Maps of wind speed, potential of electricity generated by a single wind turbine and suitability of areas of the Sea of Azov for the location of offshore wind farms at an altitude of 200 m above sea level have been presented. These data can be used by designers of wind energy facilities as a basis for determining the optimal power of wind turbines and the type of energy for a particular area of the Sea of Azov.


Sign in / Sign up

Export Citation Format

Share Document