Ontology of Lithography-Based Processes in Additive Manufacturing with Focus on Ceramic Materials

Author(s):  
Marc Gmeiner ◽  
Wilfried Lepuschitz ◽  
Munir Merdan ◽  
Maximilian Lackner
Author(s):  
A. P. Iliopoulos ◽  
J. G. Michopoulos ◽  
J. C. Steuben ◽  
A. J. Birnbaum ◽  
B. D. Graber ◽  
...  

Abstract The development of advanced additive manufacturing (AM) and material processing techniques is currently a topic of great interest to broad communities of scientists and engineers. In particular, there is a need for AM processes capable of producing functional and high-quality components at a faster rate than is currently achievable. In response to this demand, the present work introduces the initial steps of a novel spatially-resolved and selective approach for processing volumetric regions of ceramic materials. The proposed method utilizes microwave radiation to heat material at desired locations within a domain filled with ceramic powder. Using this principle of operation, a number of methods for implementation of this process are proposed. As a first step, a multiphysics computational methodology and an associated model that allows for the analysis and design of relevant processing systems is introduced. Additionally, a number of simulations demonstrating the feasibility of the proposed methodology are presented. Based on these preliminary results, we conclude with a discussion of ongoing and future efforts to fully realize this technology.


Author(s):  
Brooke Mansfield ◽  
Sabrina Torres ◽  
Tianyu Yu ◽  
Dazhong Wu

Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.


Author(s):  
Diptanshu ◽  
Erik Young ◽  
Chao Ma ◽  
Suleiman Obeidat ◽  
Bo Pang ◽  
...  

The popularity of additive manufacturing for producing porous bio-ceramics using vat photopolymerization in the recent years has gained a lot of impetus due to its high resolution and low surface roughness. In this study, a commercial vat polymerization printer (Nobel Superfine, XYZprinting) was used to create green bodies using a ceramic suspension consisting of 10 vol.% of alumina particles in a photopolymerizable resin. Four different sizes of cubical green bodies were printed out. They were subjected to thermal processing which included de-binding to get rid of the polymer and thereafter sintering for joining of the ceramic particles. The porosity percentage of the four different sizes were measured and compared. The lowest porosity was observed in the smallest cubes (5 mm). It was found to be 43.3%. There was an increase in the porosity of the sintered parts for the larger cubes (10, 15 and 20 mm). However, the difference in the porosity among these sizes was not significant and ranged from 61.5% to 65.2%. The compressive testing of the samples showed that the strength of the 5-mm cube was the maximum among all samples and the compressive strength decreased as the size of the samples increased. These ceramic materials of various densities are of great interest for biomedical applications.


2021 ◽  
Vol 116 ◽  
pp. 100736 ◽  
Author(s):  
Y. Lakhdar ◽  
C. Tuck ◽  
J. Binner ◽  
A. Terry ◽  
R. Goodridge

Cerâmica ◽  
2020 ◽  
Vol 66 (380) ◽  
pp. 354-366
Author(s):  
A. Ruscitti ◽  
C. Tapia ◽  
N. M. Rendtorff

Abstract This paper aims to present a state of the art of additive manufacturing (AM) of ceramic materials based on extrusion processes of clay pastes, reviewing the definitions and classifications of the AM field under current international standards. A general overview on the AM category ‘material extrusion’ is provided and the class ‘paste deposition modeling’ is proposed for those techniques based on the extrusion of pastes that are solidified by solvent vaporization, with the aim of distinguishing it from the class ‘fused deposition modeling’, which is applied to extruded polymers through temperature plasticization. Based on the survey of background information on 3D printing technology by ceramic paste extrusion, a classification and historization of the innovations in the development of this technology are proposed.


2019 ◽  
Vol 26 (1) ◽  
pp. 58-70
Author(s):  
Yu YUN ◽  
Tingchun SHI ◽  
Yonghui MA ◽  
Fangfang SUN ◽  
Jinde PAN ◽  
...  

Additive manufacturing is a rapid manufacturing based on discrete accumulation to achieve prototypes or parts of products. Inorganic non-metallic materials, as one of the three major materials, have incomparable application prospect in medical, aerospace, automotive, construction, arts and crafts, as well as many other fields. In order to rapidly create devices with arbitrarily complex shapes, additive manufacturing of inorganic non-metallic materials is becoming a hot spot of current research. In view of the technical types, materials and other aspects, this article introduced research status and development of additive manufacturing in inorganic non-metallic materials at home and abroad. Several common inorganic non-metallic materials are compared and analyzed, such as Al2O3, Si3N4 SiO2, ZrO2, etc. The forming characteristics and the problems of several popular ceramic materials and sand–casting materials are illustrated with emphases. The key problems existed in additive manufacturing forming process of inorganic non-metallic material are pointed out and urgent to be solved at present. Furthermore, the impacts of the material handling process, three dimensional printing (3DP), Selective Laser Sintering(SLS), Selective Laser Melting (SLM) three-dimensional forming processes and post treatment process on the quality and performance of the forming parts are analyzed. Finally, the prospects in SLS of the gem material are put forward.


Author(s):  
Robert-Jan Koopmans ◽  
Sebastian Schuh ◽  
Tobias Bartok ◽  
Yann X. Batonneau ◽  
Corentin Maleix ◽  
...  

Author(s):  
Sefiu Abolaji Rasaki ◽  
Dingyu Xiong ◽  
Shufeng Xiong ◽  
Fang Su ◽  
Muhammad Idrees ◽  
...  

AbstractConversion of inorganic-organic frameworks (ceramic precursors and ceramic-polymer mixtures) into solid mass ceramic structures based on photopolymerization process is currently receiving plentiful attention in the field of additive manufacturing (3D printing). Various techniques (e.g., stereolithography, digital light processing, and two-photon polymerization) that are compatible with this strategy have so far been widely investigated. This is due to their cost-viability, flexibility, and ability to design and manufacture complex geometric structures. Different platforms related to these techniques have been developed too, in order to meet up with modern technology demand. Most relevant to this review are the challenges faced by the researchers in using these 3D printing techniques for the fabrication of ceramic structures. These challenges often range from shape shrinkage, mass loss, poor densification, cracking, weak mechanical performance to undesirable surface roughness of the final ceramic structures. This is due to the brittle nature of ceramic materials. Based on the summary and discussion on the current progress of material-technique correlation available, here we show the significance of material composition and printing processes in addressing these challenges. The use of appropriate solid loading, solvent, and preceramic polymers in forming slurries is suggested as steps in the right direction. Techniques are indicated as another factor playing vital roles and their selection and development are suggested as plausible ways to remove these barriers.


Sign in / Sign up

Export Citation Format

Share Document