Fluorescence Tracking of Motor Proteins In Vitro

Author(s):  
Mark DeWitt ◽  
Thomas Schenkel ◽  
Ahmet Yildiz
Keyword(s):  
1994 ◽  
Vol 107 (7) ◽  
pp. 1885-1897 ◽  
Author(s):  
V. Allan ◽  
R. Vale

We have studied the microtubule-dependent formation of tubular membrane networks in vitro, using a heterologous system composed of Xenopus egg cytosol combined with rat liver membrane fractions enriched in either Golgi stacks or rough endoplasmic reticulum. The first step in membrane network construction involves the extension of membrane tubules along microtubules by the action of microtubule-based motor proteins. We have observed for both membrane fractions that 80–95% of moving tubule tips possess a distinct globular domain. These structures do not form simply as a consequence of motor protein activity, but are stable domains that appear to be enriched in active microtubule motors. Negative stain electron microscopy reveals that the motile globular domains associated with the RER networks are generally smaller than those observed in networks derived from a crude Golgi stack fraction. The globular domains from the Golgi fraction are often packed with very low density lipoprotein particles (the major secretory product of hepatocytes) and albumin, which suggests that motor proteins may be specifically enriched in organelle regions where proteins for export are accumulated. These data raise the possibility that the concentration of active motor proteins into specialised membrane domains may be an important feature of the secretory pathway.


1991 ◽  
Vol 112 (6) ◽  
pp. 1189-1197 ◽  
Author(s):  
T Shimizu ◽  
K Furusawa ◽  
S Ohashi ◽  
Y Y Toyoshima ◽  
M Okuno ◽  
...  

The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament-activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament-activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro.


1998 ◽  
Vol 111 (9) ◽  
pp. 1155-1164 ◽  
Author(s):  
H. Sakakibara ◽  
H. Nakayama

Three kinds of subparticles of Chlamydomonas outer-arm dynein containing the alphabeta, beta and gamma heavy chains were isolated and assayed for their activities to translocate microtubules in vitro. All of them had activities to form bundles of microtubules in solution in an ATP-dependent manner and, when adsorbed on an appropriate glass surface, translocated microtubules. The alphabeta subparticle readily translocated microtubules on a silicone-coated glass surface with a velocity of 4.6 micron/second at 1 mM ATP. The beta subparticle translocated microtubules after it had been preincubated with tubulin dimer and when the Brownian movement of microtubules was suppressed by addition of methylcellulose. The velocity was on average 0.7 micron/second. The gamma subparticle translocated microtubules after being preincubated with tubulin dimer and adsorbed onto a silicone-coated glass surface. The velocity was about 3.8 micron/second. The tubulin dimer appeared to facilitate in vitro motility by blocking the ATP-insensitive binding of dynein subparticles to microtubule. The alphabeta, beta and gamma subparticles were thus found to have different properties as motor proteins. In addition, these subparticles showed different dependencies upon the potassium acetate concentration. Hence the outer-arm dynein of Chlamydomonas is a complex of motor proteins with different properties.


1992 ◽  
Vol 119 (6) ◽  
pp. 1589-1596 ◽  
Author(s):  
R D Vale ◽  
F Malik ◽  
D Brown

Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells.


1990 ◽  
Vol 110 (5) ◽  
pp. 1623-1633 ◽  
Author(s):  
J E Rickard ◽  
T E Kreis

A protein of Mr 170,000 (170K protein) has been identified in HeLa cells, using an antiserum raised against HeLa nucleotide-sensitive microtubule-binding proteins. Affinity-purified antibodies specific for this 170K polypeptide were used for its characterization. In vitro sedimentation of the 170K protein with taxol microtubules polymerized from HeLa high-speed supernatant is enhanced in the presence of an ATP depleting system, but unaffected by the non-hydrolyzable ATP analogue AMP-PNP. In addition, it can be eluted from taxol microtubules by ATP or GTP, as well as NaCl. Thus it shows microtubule-binding characteristics distinct from those of the previously described classes of nucleotide-sensitive microtubule-binding proteins, the motor proteins kinesin and cytoplasmic dynein, homologues of which are also present in HeLa cells. The 170K protein sediments on sucrose gradients at approximately 6S, separate from kinesin (9.5S) and cytoplasmic dynein (20S), further indicating that it is not associated with these motor proteins. Immunofluorescence localization of the 170K protein shows a patchy distribution in interphase HeLa cells, often organized into linear arrays that correlate with microtubules. However, not all microtubules are labeled, and there is a significant accumulation of antigen at the peripheral ends of microtubules. In mitotic cells, 170K labeling is found in the spindle, but there is also dotty labeling in the cytoplasm. After depolymerization of microtubules by nocodazole, the staining pattern is also patchy but not organized in linear arrays, suggesting that the protein may be able to associate with other intracellular structures as well as microtubules. In vinblastine-treated cells, there is strong labeling of tubulin paracrystals, and random microtubules induced in vivo by taxol are also labeled by the antibodies. These immunofluorescence labeling patterns are stable to extraction of cells with Triton X-100 before fixation, further suggesting an association of the protein with cytoplasmic structures. In vivo, therefore, the 170K protein appears to be associated with a subset of microtubules at discrete sites. Its in vitro behavior suggests that it belongs to a novel class of nucleotide-sensitive microtubule-binding proteins.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Marvin E Tanenbaum ◽  
Ronald D Vale ◽  
Richard J McKenney

Cytoplasmic dynein is the predominant minus-end-directed microtubule (MT) motor in most eukaryotic cells. In addition to transporting vesicular cargos, dynein helps to organize MTs within MT networks such as mitotic spindles. How dynein performs such non-canonical functions is unknown. Here we demonstrate that dynein crosslinks and slides anti-parallel MTs in vitro. Surprisingly, a minimal dimeric motor lacking a tail domain and associated subunits can cause MT sliding. Single molecule imaging reveals that motors pause and frequently reverse direction when encountering an anti-parallel MT overlap, suggesting that the two motor domains can bind both MTs simultaneously. In the mitotic spindle, inward microtubule sliding by dynein counteracts outward sliding generated by kinesin-5, and we show that a tailless, dimeric motor is sufficient to drive this activity in mammalian cells. Our results identify an unexpected mechanism for dynein-driven microtubule sliding, which differs from filament sliding mechanisms described for other motor proteins.


2022 ◽  
Author(s):  
Matthew R Hannaford ◽  
Rong Liu ◽  
Neil Billington ◽  
Zachary T Swider ◽  
Brian J Galletta ◽  
...  

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosome nucleated microtubules with motor proteins. However, it remains unknown how centrioles migrate in cellular contexts in which centrioles do not nucleate microtubules. Here, we demonstrate that during interphase inactive centrioles move directly along the noncentrosomal microtubule network as cargo for the motor protein Kinesin-1. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. PLP directly interacts with the cargo binding domain of Kinesin-1 and they comigrate on microtubules in vitro. Finally, we demonstrate that PLP-Kinesin-1 dependent transport is essential for centrosome asymmetry age dependent centrosome inheritance in asymmetric stem cell division.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Christine Mieck ◽  
Maxim I Molodtsov ◽  
Katarzyna Drzewicka ◽  
Babet van der Vaart ◽  
Gabriele Litos ◽  
...  

Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors, we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a ‘foothold’ that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus.


Sign in / Sign up

Export Citation Format

Share Document