A Weak Solution to the Navier–Stokes System with Navier’s Boundary Condition in a Time-Varying Domain

Author(s):  
Jiří Neustupa ◽  
Patrick Penel
2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Igor Pažanin

We consider a flow of incompressible Newtonian fluid through a pipe with helical shape. We suppose that the flow is governed by the prescribed pressure drop between pipe's ends. Such model has relevance to some important engineering applications. Under small data assumption, we prove the existence and uniqueness of the weak solution to the corresponding Navier-Stokes system with pressure boundary condition. The proof is based on the contraction method.


2006 ◽  
Vol 16 (05) ◽  
pp. 701-716 ◽  
Author(s):  
REMIGIO RUSSO ◽  
ALFONSINA TARTAGLIONE

The Robin problem for Stokes and Navier–Stokes systems is considered in a Lipschitz domain with a compact boundary. By making use of the boundary layer potentials approach, it is proved that for Stokes system this problem admits a very weak solution under suitable assumptions on the boundary datum. A similar result is proved for the Navier–Stokes system, provided that the datum is "sufficiently small".


2012 ◽  
Vol 53 ◽  
Author(s):  
Kristina Kaulakytė

In this paper the stationary Navier–Stokes system with non-homogeneous boundary condition is studied in domain which consists of two connected layers. The extension of the boundary value, which reduces the non-homogeneous boundary problem to the homogeneous one, is constructed in this paper.


Author(s):  
Sarka Necasova ◽  
Mythily Ramaswamy ◽  
Arnab Roy ◽  
Anja Schlomerkemper

This paper is devoted to the existence of a weak solution to a system describing a self-propelled motion of a rigid body in a viscous fluid in the whole space. The fluid is modelled by the incompressible nonhomogeneous Navier-Stokes system with a nonnegative density. The motion of the rigid body is described by the  balance of linear and angular momentum. We consider the case where slip is allowed at the fluid-solid interface through Navier condition and prove the global existence of a weak solution.


2021 ◽  
Vol 61 (SI) ◽  
pp. 117-121
Author(s):  
Tomáš Neustupa ◽  
Ondřej Winter

This paper studies the artificial outflow boundary condition for the Navier-Stokes system. This type of condition is widely used and it is therefore very important to study its influence on a numerical solution of the corresponding boundary-value problem. We particularly focus on the role of the coefficient in front of the nonlinear term in the boundary condition on the outflow. The influence of this term is examined numerically, comparing the obtained results in a close neighbourhood of the outflow. The numerical experiment is carried out for a fluid flow through the channel with so called sudden extension. Presented numerical results are obtained by means of the OpenFOAM toolbox. They confirm that the kinetic energy of the flow in the channel can be controlled by means of the proposed boundary condition.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jiayi Han ◽  
Changchun Liu

<p style='text-indent:20px;'>We consider a two-species chemotaxis-Navier-Stokes system with <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian in three-dimensional smooth bounded domains. It is proved that for any <inline-formula><tex-math id="M3">\begin{document}$ p\geq2 $\end{document}</tex-math></inline-formula>, the problem admits a global weak solution.</p>


2017 ◽  
Vol 27 (14) ◽  
pp. 2745-2780 ◽  
Author(s):  
Yulan Wang

This paper deals with the Keller–Segel–Navier–Stokes system [Formula: see text] in a bounded domain [Formula: see text] with smooth boundary, where [Formula: see text] and [Formula: see text] are given functions. We shall develop a weak solution concept which requires solutions to satisfy very mild regularity hypotheses only, especially for the component [Formula: see text]. Under the assumption that there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] it is finally shown that for all suitably regular initial data an associated initial-boundary value problem possesses a globally defined weak solution. In comparison to the result for the corresponding fluid-free system, it is easy to see that the restriction on [Formula: see text] here is optimal. This result extends previous studies on global solvability for this system in the two-dimensional domain and for the associated chemotaxis-Stokes system obtained on neglecting the nonlinear convective term in the fluid equation.


Sign in / Sign up

Export Citation Format

Share Document