Adhesion Proteins on Airway Eosinophils in Allergy and Asthma

1993 ◽  
pp. 163-172
Author(s):  
Julie B. Sedgwick ◽  
William W. Busse
2002 ◽  
Vol 69 ◽  
pp. 47-57 ◽  
Author(s):  
Catherine L. R. Merry ◽  
John T. Gallagher

Heparan sulphate (HS) is an essential co-receptor for a number of growth factors, morphogens and adhesion proteins. The biosynthetic modifications involved in the generation of a mature HS chain may determine the strength and outcome of HS–ligand interactions. These modifications are catalysed by a complex family of enzymes, some of which occur as multiple gene products. Various mutant mice have now been generated, which lack the function of isolated components of the HS biosynthetic pathway. In this discussion, we outline the key findings of these studies, and use them to put into context our own work concerning the structure of the HS generated by the Hs2st-/- mice.


1995 ◽  
Vol 73 (02) ◽  
pp. 291-296 ◽  
Author(s):  
Kenjiro Hamamoto ◽  
Shosaku Nomura ◽  
Masahiko Suzuki ◽  
Shigetoshi Ohga ◽  
Shirou Fukuhara

SummaryPlatelets are known to internalize monoclonal antibodies directed against the glycoprotein (GP) IIb/IIIa complex. We investigated whether an antibody directed against this complex (NNKY 2-11) was transported from the surface membrane to the intracellular pool in HEL cells. Flow cytometry showed that the percent binding of NNKY 2-11 to the surface membrane of HEL cells was decreased after incubation for 24 h compared with 1 h, while the binding of an anti-GPIb antibody (NNKY 5-5) did not change. It did not seem likely that the GP Ilb/IIIa complex antibody was shed from the surface membrane of the HEL cells during incubation, because the medium conditioned by incubation with these cells for 24 h showed almost no binding to washed platelets. In addition, immunoelectron microscopy demonstrated that GP IIb/IIIa complex antibodies were incorporated into the intracellular pool of HEL cells and were associated with alpha granules. These findings indicated that an anti-GP IIb/IIIa antibody could be internalized by megakaryocytes, as has been previously shown with platelets, suggesting that megakaryocyte GP IIb/IIIa may act as a carrier for various adhesion proteins.


10.2741/2093 ◽  
2007 ◽  
Vol 12 (1) ◽  
pp. 690 ◽  
Author(s):  
Rama Chaudhry

1998 ◽  
Vol 78 (2) ◽  
pp. 194-194
Author(s):  
D. PAYNE
Keyword(s):  

2020 ◽  
Author(s):  
Shiyu Luo ◽  
Qifei Li ◽  
Jasmine Lin ◽  
Quinn Murphy ◽  
Isabelle Marty ◽  
...  

Abstract SPEG, a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amounts of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1, and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.


1993 ◽  
Vol 13 (4) ◽  
pp. 2554-2563 ◽  
Author(s):  
D Wojciechowicz ◽  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document