Internalization of an Anti-Glycoprotein IIb/IIIa Antibody by HEL Cells

1995 ◽  
Vol 73 (02) ◽  
pp. 291-296 ◽  
Author(s):  
Kenjiro Hamamoto ◽  
Shosaku Nomura ◽  
Masahiko Suzuki ◽  
Shigetoshi Ohga ◽  
Shirou Fukuhara

SummaryPlatelets are known to internalize monoclonal antibodies directed against the glycoprotein (GP) IIb/IIIa complex. We investigated whether an antibody directed against this complex (NNKY 2-11) was transported from the surface membrane to the intracellular pool in HEL cells. Flow cytometry showed that the percent binding of NNKY 2-11 to the surface membrane of HEL cells was decreased after incubation for 24 h compared with 1 h, while the binding of an anti-GPIb antibody (NNKY 5-5) did not change. It did not seem likely that the GP Ilb/IIIa complex antibody was shed from the surface membrane of the HEL cells during incubation, because the medium conditioned by incubation with these cells for 24 h showed almost no binding to washed platelets. In addition, immunoelectron microscopy demonstrated that GP IIb/IIIa complex antibodies were incorporated into the intracellular pool of HEL cells and were associated with alpha granules. These findings indicated that an anti-GP IIb/IIIa antibody could be internalized by megakaryocytes, as has been previously shown with platelets, suggesting that megakaryocyte GP IIb/IIIa may act as a carrier for various adhesion proteins.

2000 ◽  
Vol 16 (3-4) ◽  
pp. 131-133 ◽  
Author(s):  
S. Feki ◽  
H. El Omri ◽  
M. A. Laatiri ◽  
S. Ennabli ◽  
K. Boukef ◽  
...  

The precision of immunological characterization of leukemias was improved by a certain number of technical innovations, particularly hybridoma production and standardization, resulting in monoclonal antibodies and definition of recognised cellular antigens (designated by CD: Cluster of Differentiation).The aim of this work was to determine the immunophenotyping profile of patients with leukemia, by means of a flow cytometric method: 66 blood samples coming from leukemic persons in the Sahel region were studied by flow cytometry, using about thirty monoclonal antibodies all marked with a fluorochrome, in one or two colour systems to assess their distribution according to type (lymphoid B or T / myeloid) and age, and to search for possible co-expressions of markers of different lineages.The marked preponderance of childhood B-ALL in our series is, at least partly, attributable to the age distribution of the Tunisian population. In agreement with studies from other countries, the majority of AML cases occurred among adults. A high proportion of AML cases in our series co-expressed markers of other lineages. Overall, accurate classification of acute leukemias was possible from a simple peripheral blood sample in 62 of 66 cases (93.9%).


Hybridoma ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Christina Abbott ◽  
Guo Huang ◽  
Aaron R. Ellison ◽  
Ching Chen ◽  
Taruna Arora ◽  
...  

Antibodies ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 37 ◽  
Author(s):  
Jennifer Linden ◽  
Kiel Telesford ◽  
Samantha Shetty ◽  
Paige Winokour ◽  
Sylvia Haigh ◽  
...  

The pore-forming epsilon toxin (ETX) produced by Clostridium perfringens is among the most lethal bacterial toxins known. Sensitive antibody-based reagents are needed to detect toxin, distinguish mechanisms of cell death, and prevent ETX toxicity. Using B-cell immuno-panning and cloning techniques, seven ETX-specific monoclonal antibodies were generated from immunized rabbits. ETX specificity and sensitivity were evaluated via western blot, ELISA, immunocytochemistry (ICC), and flow cytometry. ETX-neutralizing function was evaluated both in vitro and in vivo. All antibodies recognized both purified ETX and epsilon protoxin via western blot with two capable of detecting the ETX-oligomer complex. Four antibodies detected ETX via ELISA and three detected ETX bound to cells via ICC or flow cytometry. Several antibodies prevented ETX-induced cell death by either preventing ETX binding or by blocking ETX oligomerization. Antibodies that blocked ETX oligomerization inhibited ETX endocytosis and cellular vacuolation. Importantly, one of the oligomerization-blocking antibodies was able to protect against ETX-induced death post-ETX exposure in vitro and in vivo. Here we describe the production of a panel of rabbit monoclonal anti-ETX antibodies and their use in various biological assays. Antibodies possessing differential specificity to ETX in particular conformations will aid in the mechanistic studies of ETX cytotoxicity, while those with ETX-neutralizing function may be useful in preventing ETX-mediated mortality.


Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Jessica Ramadhin ◽  
Vanessa Silva-Moraes ◽  
Thomas Norberg ◽  
Donald Harn

Monoclonal antibodies (mAbs) that recognize glycans are useful tools to assess carbohydrates’ structure and function. We sought to produce IgG mAbs to the human milk oligosaccharide (HMO), lacto-N-fucopentaose III (LNFPIII). LNFPIII contains the Lewisx antigen, which is found on the surface of schistosome parasites. mAbs binding the Lewisx antigen are well-reported in the literature, but mAbs recognizing HMO structures are rare. To generate mAbs, mice were immunized with LNFPIII-DEX (P3DEX) plus CpGs in VacSIM®, a novel vaccine/drug delivery platform. Mice were boosted with LNFPIII-HSA (P3HSA) plus CpGs in Incomplete Freund’s Adjuvant (IFA). Splenocytes from immunized mice were used to generate hybridomas and were screened against LNFPIII conjugates via enzyme-linked immunosorbent assay (ELISA). Three positive hybridomas were expanded, and one hybridoma, producing IgG and IgM antibodies, was cloned via flow cytometry. Clone F1P2H4D8D5 was selected because it produced IgG1 mAbs, but rescreening unexpectedly showed binding to both LNFPIII and lacto-N-neotetraose (LNnT) conjugates. To further assess the specificity of the mAb, we screened it on two glycan microarrays and found no significant binding. This finding suggests that the mAb binds to the acetylphenylenediamine (APD) linker-spacer structure of the conjugate. We present the results herein, suggesting that our new mAb could be a useful probe for conjugates using similar linker spacer structures.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 2020-2028 ◽  
Author(s):  
HY Huh ◽  
SF Pearce ◽  
LM Yesner ◽  
JL Schindler ◽  
RL Silverstein

Abstract CD36 is an 88-kD integral membrane glycoprotein expressed on monocytes, platelets, and certain microvascular endothelium serving distinct cellular functions both as an adhesive receptor for thrombospondin, collagen, and Plasmodium falciparum-infected erythrocytes, and as a scavenger receptor for oxidized low-density lipoprotein and apoptotic neutrophils. In this study, we examined the expression of CD36 during in vitro differentiation of peripheral blood monocytes into culture- derived macrophages. Steady-state mRNA levels of CD36 showed a transient eightfold increase during monocyte-to-macrophage differentiation, peaking at the early macrophage stage (days 3 or 4 in culture), following a gradual decrease back to baseline levels by the mature macrophage stage (days 7 or 8 in culture). Immunoblotting with monoclonal antibodies to CD36 supported this transient, yet significant (8- to 10-fold) increase in total protein levels of CD36. The increased CD36 protein was observed at the plasma membrane, whereas an intracellular pool of CD36 was also detected from day 2 to day 6 in culture through indirect immunofluorescence. A concomitant twofold increase in the cells' ability to bind 125I-thrombospondin at the early macrophage stage (day 4) verified the functional competency of the plasma membrane localized CD36, and supported the presence of an intracellular pool of CD36. The in vitro differentiated macrophages as well as alveolar macrophages remained responsive to macrophage colony- stimulating factor (M-CSF), a known transcriptional regulator of monocyte CD36. The M-CSF-induced macrophages resulted in enhanced foam cell formation, which was inhibitable with monoclonal antibodies to CD36. Thus, the transient expression of CD36 during monocyte-to- macrophage differentiation, and the ability of M-CSF to maintain macrophage CD36 at elevated levels, may serve as a critical process in dictating the functional activity of CD36 during inflammatory responses and atherogenesis.


Author(s):  
S J Shattil ◽  
J A Hoxie ◽  
M Cunningham ◽  
C S Abrahms ◽  
J O’Brien ◽  
...  

Platelets may become activated in a number of clinical disorders and participate in thrombus formation. We have developed a direct test for activated platelets in whole blood that utilizes dual-color flow cytometry and requires no washing steps. Platelets were distinguished from erythrocytes and white blood cells in the flow cytometer by labeling the platelets with biotin-AP1, an antibody specific for membrane glycoprotein lb, and analyzing the cells for phycoerythrin-streptavidin fluorescence. Membrane surface changes resulting from platelet activation were detected with three different FITC-labeled monoclonal antibodies: 1) PAC1, an antibody specific for the fibrinogen receptor on activated platelets; 2) 9F9, which binds to the D-domain of fibrinogen and detects platelet-bound fibrinogen; and 3) S12, which binds to an alpha-granule membrane protein that associates with the platelet surface during secretion. Unstimulated platelets demonstrated no PAC1, 9F9, or S12-specific fluorescence, indicating that they did not bind these antibodies. Upon stimulation with agonists, however, the platelets demonstrated a dose-dependent increase in FITC-fluorescence. The binding of 9F9 to activated platelets required fibrinogen. Low concentrations of ADP and epinephrine, which induce fibrinogen receptors but little secretion, stimulated near-maximal PAC1 or 9F9 binding but little S12 binding. On the other hand, a concentration of phorbol myristate acetate that evokes full platelet aggregation and secretion induced maximal binding of all three antibodies. When blood samples containing activated and non-activated platelets were mixed, as few as 0.8% activated platelets could be detected by this technique. There was a direct correlation between ADP-induced FITC-PAC1 binding and binding determined in a conventional 125I-PAC1 binding assay (r = 0.99; p < 0.001). These studies demonstrate that activated platelets can be reliably detected in whole blood using activation-dependent monoclonal antibodies and flow cytometry. This method may be useful to assess the degree of platelet activation and the efficacy platelet inhibitor therapy in thrombotic disorders.


Sign in / Sign up

Export Citation Format

Share Document