Endothelin-1 Increases Airway Mucosa Blood Flow in the Pig

Author(s):  
Régis Matran ◽  
Kjell Alving ◽  
Anette Hemsen ◽  
Jan M. Lundberg
2017 ◽  
Vol 122 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Leryn J. Reynolds ◽  
Daniel P. Credeur ◽  
Camila Manrique ◽  
Jaume Padilla ◽  
Paul J. Fadel ◽  
...  

Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)−1·min−1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM−1·min−1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D ( P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion ( P < 0.05) but did not increase with insulin in either group ( P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 ( P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.


1992 ◽  
Vol 72 (4) ◽  
pp. 1563-1570 ◽  
Author(s):  
G. Piedimonte ◽  
J. I. Hoffman ◽  
W. K. Husseini ◽  
W. L. Hiser ◽  
J. A. Nadel

Stimulation of sensory nerves in the airway mucosa causes local release of the neuropeptides substance P and calcitonin gene-related peptide (CGRP). In this study we used a modification of the reference-sample microsphere technique to measure changes in regional blood flow and cardiac output distribution produced in the rat by substance P, CGRP, and capsaicin (a drug that releases endogenous neuropeptides from sensory nerves). Three sets of microspheres labeled with different radionuclides were injected into the left ventricle of anesthetized F344 rats before, immediately after, and 5 min after left ventricular injections of capsaicin, substance P, or CGRP. The reference blood sample was withdrawn from the abdominal aorta and was simultaneously replaced with 0.9% NaCl at 37 degrees C. We found that stimulation of sensory nerves with a low dose of capsaicin causes a large and selective increase in microvascular blood flow in the extrapulmonary airways. The effect of capsaicin is mimicked by systemic injection of substance P but not by CGRP, suggesting that substance P is the main agent of neurogenic vasodilation in rat airways.


1995 ◽  
Vol 269 (6) ◽  
pp. H1965-H1972 ◽  
Author(s):  
J. Wong ◽  
V. M. Reddy ◽  
K. Hendricks-Munoz ◽  
J. R. Liddicoat ◽  
R. Gerrets ◽  
...  

Increased concentrations of endothelin-1 (ET-1) are found in children with congenital heart diseases that produce increased pulmonary blood flow and pulmonary hypertension, but the role of ET-1 in the pathophysiology of pulmonary hypertension is unclear. Therefore, we investigated ET-1-induced vasoactive responses and ET-1 concentrations in an animal model of pulmonary hypertension and increased pulmonary blood flow. Vascular shunts were placed between the ascending aorta and main pulmonary artery in seven late-gestation fetal sheep. Four weeks after spontaneous delivery, ET-1 increased pulmonary vascular resistance by 29.7 +/- 34.4% (P < 0.05), the ETb-receptor agonist [Ala1,3,11,15]ET-1 (4AlaET-1) had no effect, and the ETa-receptor antagonist cyclo(D-Asp-L-Pro-D-Val-L-Leu-D-Trp) (BQ-123) decreased pulmonary vascular resistance by -16.0 +/- 5.6% (P < 0.05). In contrast, in six control lambs with a similar degree of pulmonary hypertension induced by U-46619, ET-1 and 4AlaET-1 decreased pulmonary vascular resistance by 24.8 +/- 17.6, and 20.0 +/- 13.8%, respectively (P < 0.05). In addition, systemic arterial concentrations of immunoreactive ET-1 were elevated in lambs with pulmonary hypertension (29.2 +/- 9.6 vs. 15.2 +/- 10.7 pg/ml, P < 0.05). Pulmonary hypertension and increased pulmonary blood flow alters the response of ET-1 from pulmonary vasodilation to vasoconstriction. These altered responses suggest a role for ET-1 and its receptors in the pathogenesis of pulmonary hypertension secondary to increased pulmonary blood flow.


HPB Surgery ◽  
1996 ◽  
Vol 9 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Kjetil Unneberg ◽  
Marianne Mjaaland ◽  
Elin Helseth ◽  
Arthur Revhaug

Endothelin-1 belongs to a family of potent vasoconstrictors, recently isolated from endothelial cells. Endothelin-1 has a variety of hepatic effects and hepatic clearance from the circulation is important. Elevated plasma concentrations of Endothelin-1 are found after orthotopic liver transplantation and in cirrhosis with ascites.This study in piglets on hepatic bloodflow was designed to compare differences in effects between central venous and intraportal injection of endothelin-1, and to evaluate effects of repeated injections. Central venous injection of endothelin-1 caused a larger reduction in portal vein flow, while intraportal injection caused a larger increase in portal vein pressure. Repeated injections resulted in a reduction in portal vein flow and an increase in portal vein vascular resistance.


2010 ◽  
Vol 91 (6) ◽  
pp. 853-859 ◽  
Author(s):  
Hiroaki Kurashima ◽  
Hiroshi Watabe ◽  
Noriko Sato ◽  
Sanae Abe ◽  
Naruhiro Ishida ◽  
...  

2002 ◽  
Vol 282 (5) ◽  
pp. R1528-R1535 ◽  
Author(s):  
N. C. F. Sandgaard ◽  
J. L. Andersen ◽  
N.-H. Holstein-Rathlou ◽  
P. Bie

We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven times over 8 wk in the same dog. Angiotensin II decreased TRBF (350 ± 16 to 299 ± 15 ml/min), an effect completely blocked by candesartan (TRBF 377 ± 17 ml/min). Subsequent endothelin-1 infusion reduced TRBF to 268 ± 20 ml/min. Bilateral carotid occlusion (8 sessions in 3 dogs) increased arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range <0.06–0.07 Hz, with a peak in the transfer function at 0.03 Hz. It is concluded that continuous measurement of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta.


1987 ◽  
Vol 62 (2) ◽  
pp. 526-532 ◽  
Author(s):  
E. M. Baile ◽  
R. W. Dahlby ◽  
B. R. Wiggs ◽  
G. H. Parsons ◽  
P. D. Pare

Tracheobronchial blood flow increases with cold air hyperventilation in the dog. The present study was designed to determine whether the cooling or the drying of the airway mucosa was the principal stimulus for this response. Six anesthetized dogs (group 1) were subjected to four periods of eucapnic hyperventilation for 30 min with warm humid air [100% relative humidity (rh)], cold dry air (-12 degrees C, 0% rh), warm humid air, and warm dry air (43 degrees C, 0% rh). Five minutes before the end of each period of hyperventilation, tracheal and central airway blood flow was determined using four differently labeled 15-micron diam radioactive microspheres. We studied another three dogs (group 2) in which 15- and 50-micron microspheres were injected simultaneously to determine whether there were any arteriovenous communications in the bronchovasculature greater than 15 micron diam. After the last measurements had been made, all dogs were killed, and the lungs, including the trachea, were excised and blood flow to the trachea, left lung bronchi, and parenchyma was calculated. Warm dry air hyperventilation produced a consistently greater increase in tracheobronchial blood flow (P less than 0.01) than cold dry air hyperventilation, despite the fact that there was a smaller fall (6 degrees C) in tracheal tissue temperature during warm dry air hyperventilation than during cold dry air hyperventilation (11 degrees C), suggesting that drying may be a more important stimulus than cold for increasing airway blood flow. In group 2, the 15-micron microspheres accurately reflected the distribution of airway blood flow but did not always give reliable measurements of parenchymal blood flow.


1991 ◽  
Vol 70 (1) ◽  
pp. 260-266 ◽  
Author(s):  
D. C. Crossman ◽  
S. D. Brain ◽  
R. W. Fuller

The effect of the endothelial cell-derived peptide endothelin 1 was investigated in human skin. Intradermal injection of endothelin 1 (1–100 pmol) caused a dose-dependent area of pallor that was associated with a significant reduction in basal skin blood flow, measured by laser-Doppler blood flowmeter (with 1 pmol endothelin, P = 0.012, analysis of variance). The coadministration of endothelin 1 (1–100 pmol) with the neuropeptide vasodilator calcitonin gene-related peptide (CGRP) inhibited the vasodilator response to CGRP (10 pmol) by up to 82.7 +/- 9.2% (with 100 pmol endothelin, P less than 0.001). The response of the prostanoid vasodilator prostaglandin E2 (10 pmol) was inhibited by endothelin in a similar manner. In addition to the vasoconstrictor effects, endothelin 1 produced a dose-dependent flare that surrounded the area of pallor, and this was associated with a significant increase in blood flow (P less than 0.05) within the flare area. The H1 antagonist terfenadine (120 mg po) significantly reduced the flare area associated with endothelin 1: flare 5 min after intradermal endothelin (10 pmol, placebo treated), 668 +/- 405 mm2; terfenadine treated, 201 +/- 257 mm2 (P less than 0.05). The flare was also significantly attenuated when endothelin (10 pmol) was injected into local anesthetic-treated skin. Thus intradermal injection of endothelin in humans causes long-lasting vasoconstriction at the site of injection and a surrounding flare. Results suggest that the flare component is partially histamine dependent and the result of an axon reflex. This study demonstrates the potent activity of endothelin in human skin. It is possible that endothelin could be relevant to the local response of skin to injury.


Sign in / Sign up

Export Citation Format

Share Document