Response thresholds and division of labor in insect colonies

Author(s):  
Samuel N. Beshers ◽  
Gene E. Robinson ◽  
Jay E. Mittenthal
PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001305
Author(s):  
Ingrid Fetter-Pruneda ◽  
Taylor Hart ◽  
Yuko Ulrich ◽  
Asaf Gal ◽  
Peter R. Oxley ◽  
...  

Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.


Author(s):  
Eric Bonabeau ◽  
Marco Dorigo ◽  
Guy Theraulaz

Many species of social insects have a division of labor. The resilience of task allocation exhibited at the colony level is connected to the elasticity of individual workers. The behavioral repertoire of workers can be stretched back and forth in response to perturbations. A model based on response thresholds connects individual-level plasticity with colony-level resiliency and can account for some important experimental results. Response thresholds refer to likelihood of reacting to task-associated stimuli. Low-threshold individuals perform tasks at a lower level of stimulus than high-threshold individuals. An extension of this model includes a simple form of learning. Within individual workers, performing a given task induces a decrease of the corresponding threshold, and not performing the task induces an increase of the threshold. This double reinforcement process leads to the emergence of specialized workers, that is, workers that are more responsive to stimuli associated with particular task requirements, from a group of initially identical individuals. The fixed response threshold model can be used to allocate tasks in a multiagent system, in a way that is similar to market-based models, where agents bid to get resources or perform tasks. The response threshold model with learning can be used to generate differentiation in task performance in a multiagent system composed of initially identical entities. Task allocation in this case is emergent and more robust with respect to perturbations of the system than when response thresholds are fixed. An example application to distributed mail retrieval is presented. In social insects, different activities are often performed simultaneously by specialized individuals. This phenomenon is called division of labor [253, 272]. Simultaneous task performance by specialized workers is believed to be more efficient than sequential task performance by unspecialized workers [188, 253]. Parallelism avoids task switching, which costs energy and time. Specialization allows greater efficiency of individuals in task performance because they “know” the task or are better equipped for it. All social insects exhibit reproductive division of labor: only a small fraction of the colony, often limited to a single individual, reproduces.


2020 ◽  
pp. 148-170
Author(s):  
Robert E. Page

Insect superorganisms are characterized by a reproductive division of labor (drones, queens, and workers) and a complex division of labor among the non-reproductive individuals, the workers. In the social bees that have attained the highest degrees of sociality, at or approaching superorganism status, males don’t survive mating and are only present as reproductive sperm sequestered in the queen. Queens and workers are anatomically differentiated but derived from the same genome. Differentiation is a consequence of differential feeding of developing larvae by the workers. In the honey bee, worker nurse bees manipulate the developing larvae, forcing them into their reproductive roles. The adult workers self-organize into an ordered society, performing all of the functions necessary for colony survival and reproduction. There are no task masters or forewomen directing the workforce. Instead, every individual makes local decisions about their behavior based on their response thresholds to stimuli in their environment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sanja M Hakala ◽  
Marie-Pierre Meurville ◽  
Michael Stumpe ◽  
Adria C LeBoeuf

In cooperative systems exhibiting division of labor, such as microbial communities, multicellular organisms, and social insect colonies, individual units share costs and benefits through both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social circulatory system, where food and endogenously produced molecules are transferred mouth-to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how these endogenous molecules relate to colony life, we used quantitative proteomics to investigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that different stages of the colony life cycle circulate different types of proteins: young colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect caste determination, potentially acting as superorganismal hormones. Brood-caring individuals that are also closer to the queen in the social network (nurses) showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged between cooperative units makes social insect colonies useful models to understand the evolution and consequences of metabolic division of labor at other scales.


Sign in / Sign up

Export Citation Format

Share Document