Flood Risk Due to Heavy Rains and Rising Sea Levels in the Municipality of Maputo

Author(s):  
Enrico Ponte
2021 ◽  
Author(s):  
Vinay Shivamurthy ◽  
Bharath Aithal

<p>Coastal flooding are natural processes that are both i) essential (providing nutrients to the coastal vegetation, habitats) and ii) hazardous (negatively impact human activities, livelihood, assets, livestock and so on). Climate changes have induced higher frequency of floods, rising sea levels, high amplitude tides and other climatic extremes at regional to global scales. The increasing intensity, duration of floods is proportionately increasing the risks associated with coastal human habitations. The regional risks are defined based on the physical, demographic, socio-economic vulnerability of the habitants. Sea level rise would further enhance the coastal inundations permanently breaching these productive, densely populated regions. This necessitates the need for spatially assessing the relative hazard, vulnerability and risks at regional scales to reduce/mitigate risks.</p><p>Indian subcontinent supports the second largest global population, with numerous megacities, towns and villages along the coast and mainland. This study's main objective is to quantify the risk associated with inundations caused by rising sea levels, tidal surge at the regional level. As a case study, Sagar Island located in the verge of Sundarbans, south of West Bengal is considered. Flood risk assessment in the island has been carried out using Multi-Criteria Decision Analysis (MCDA) framework based on 23 spatial parameters.</p><p>Results indicate, within a century (1922 – 2020), the island has lost most of its natural vegetation (mangroves - Sundarbans) (47% to 3%), with increasing cultivated (agriculture, horticulture) spaces (77.4 %) and built-up environs (8.2%). Sea level rise varies from 4.4 mm/year (South) to 5.25 mm/year (North) and in the last century has breached over 2824 hectares of mainland. The study's findings reveal 19.8% of horticulture and 33.3% of agriculture assets are highly exposed to natural hazards. 1.34% population are at relatively very high-risk levels, 17.81% at high-risk levels. The study's findings reveal the variable importance of socio-economic, demographic, topographic and proximity to public service, in defining the flood vulnerability and risk towards the habitants. The approach and findings of paves the way for planning authorities to prioritise risk mitigation strategies that are region-specific to reduce the impact of inundation due to natural hazards</p><p><em>Keywords: Sea level rise, Flood risk, MCDA, Vulnerability, flood hazard</em></p>


Author(s):  
Benjamin Kingsbury

The storm came on the night of 31 October. It was a full moon, and the tides were at their peak; the great rivers of eastern Bengal were flowing high and fast to the sea. In the early hours the inhabitants of the coast and islands were overtaken by an immense wave from the Bay of Bengal — a wall of water that reached a height of 40 feet in some places. The wave swept away everything in its path, drowning around 215,000 people. At least another 100,000 died in the cholera epidemic and famine that followed. It was the worst calamity of its kind in recorded history. Such events are often described as "natural disasters." This book turns that interpretation on its head, showing that the cyclone of 1876 was not simply a "natural" event, but one shaped by all-too-human patterns of exploitation and inequality — by divisions within Bengali society, and the enormous disparities of political and economic power that characterized British rule on the subcontinent. With Bangladesh facing rising sea levels and stronger, more frequent storms, there is every reason now to revisit this terrible calamity.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 165-168 ◽  
Author(s):  
M. Beuhler

Global warming will have a significant impact on water resources within the 20 to 30-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include increased temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, reclamation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.


Author(s):  
Akira Hirano

AbstractImportant aspects for understanding the effects of climate change on tropical cyclones (TCs) are the frequency of TCs and their tracking patterns. Coastal areas are increasingly threatened by rising sea levels and associated storm surges brought on by TCs. Rice production in Myanmar relies strongly on low-lying coastal areas. This study aims to provide insights into the effects of global warming on TCs and the implications for sustainable development in vulnerable coastal areas in Myanmar. Using TC records from the International Best Track Archive for Climate Stewardship dataset during the 30-year period from 1983 to 2012, a hot spot analysis based on Getis-Ord (Gi*) statistics was conducted to identify the spatiotemporal patterns of TC tracks along the coast of Myanmar. The results revealed notable changes in some areas along the central to southern coasts during the study period. These included a considerable increase in TC tracks (p value < 0.01) near the Ayeyarwady Delta coast, otherwise known as “the rice bowl” of the nation. This finding aligns with trends in published studies and reinforced the observed trends with spatial statistics. With the intensification of TCs due to global warming, such a significant increase in TC experiences near the major rice-producing coastal region raises concerns about future agricultural sustainability.


2013 ◽  
Vol 17 (2) ◽  
pp. 679-689 ◽  
Author(s):  
J. J. Lian ◽  
K. Xu ◽  
C. Ma

Abstract. Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs) of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.


Nature ◽  
2015 ◽  
Vol 528 (7582) ◽  
pp. 310-310
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document