Method for Pornography Filtering in the WEB Based on Automatic Classification and Natural Language Processing

Author(s):  
Roman Suvorov ◽  
Ilya Sochenkov ◽  
Ilya Tikhomirov
2018 ◽  
Vol 23 (3) ◽  
pp. 175-191
Author(s):  
Anneke Annassia Putri Siswadi ◽  
Avinanta Tarigan

To fulfill the prospective student's information need about student admission, Gunadarma University has already many kinds of services which are time limited, such as website, book, registration place, Media Information Center, and Question Answering’s website (UG-Pedia). It needs a service that can serve them anytime and anywhere. Therefore, this research is developing the UGLeo as a web based QA intelligence chatbot application for Gunadarma University's student admission portal. UGLeo is developed by MegaHal style which implements the Markov Chain method. In this research, there are some modifications in MegaHal style, those modifications are the structure of natural language processing and the structure of database. The accuracy of UGLeo reply is 65%. However, to increase the accuracy there are some improvements to be applied in UGLeo system, both improvement in natural language processing and improvement in MegaHal style.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 42
Author(s):  
Eric Lazarski ◽  
Mahmood Al-Khassaweneh ◽  
Cynthia Howard

In recent years, disinformation and “fake news” have been spreading throughout the internet at rates never seen before. This has created the need for fact-checking organizations, groups that seek out claims and comment on their veracity, to spawn worldwide to stem the tide of misinformation. However, even with the many human-powered fact-checking organizations that are currently in operation, disinformation continues to run rampant throughout the Web, and the existing organizations are unable to keep up. This paper discusses in detail recent advances in computer science to use natural language processing to automate fact checking. It follows the entire process of automated fact checking using natural language processing, from detecting claims to fact checking to outputting results. In summary, automated fact checking works well in some cases, though generalized fact checking still needs improvement prior to widespread use.


2019 ◽  
Vol 35 (21) ◽  
pp. 4501-4503 ◽  
Author(s):  
Petar V Todorov ◽  
Benjamin M Gyori ◽  
John A Bachman ◽  
Peter K Sorger

Abstract Summary INDRA-IPM (Interactive Pathway Map) is a web-based pathway map modeling tool that combines natural language processing with automated model assembly and visualization. INDRA-IPM contextualizes models with expression data and exports them to standard formats. Availability and implementation INDRA-IPM is available at: http://pathwaymap.indra.bio. Source code is available at http://github.com/sorgerlab/indra_pathway_map. The underlying web service API is available at http://api.indra.bio:8000. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Kiran Raj R

Today, everyone has a personal device to access the web. Every user tries to access the knowledge that they require through internet. Most of the knowledge is within the sort of a database. A user with limited knowledge of database will have difficulty in accessing the data in the database. Hence, there’s a requirement for a system that permits the users to access the knowledge within the database. The proposed method is to develop a system where the input be a natural language and receive an SQL query which is used to access the database and retrieve the information with ease. Tokenization, parts-of-speech tagging, lemmatization, parsing and mapping are the steps involved in the process. The project proposed would give a view of using of Natural Language Processing (NLP) and mapping the query in accordance with regular expression in English language to SQL.


2017 ◽  
Vol 1 (2) ◽  
pp. 89 ◽  
Author(s):  
Azam Orooji ◽  
Mostafa Langarizadeh

It is estimated that each year many people, most of whom are teenagers and young adults die by suicide worldwide. Suicide receives special attention with many countries developing national strategies for prevention. Since, more medical information is available in text, Preventing the growing trend of suicide in communities requires analyzing various textual resources, such as patient records, information on the web or questionnaires. For this purpose, this study systematically reviews recent studies related to the use of natural language processing techniques in the area of people’s health who have completed suicide or are at risk. After electronically searching for the PubMed and ScienceDirect databases and studying articles by two reviewers, 21 articles matched the inclusion criteria. This study revealed that, if a suitable data set is available, natural language processing techniques are well suited for various types of suicide related research.


2020 ◽  
Author(s):  
Niyati Baliyan ◽  
Aarti Sharma

Abstract There is plethora of information present on the web, on a given topic, in different forms i.e. blogs, articles, websites, etc. However, not all of the information is useful. Perusing and going through all of the information to get the understanding of the topic is a very tiresome and time-consuming task. Most of the time we end up investing in reading content that we later understand was not of importance to us. Due to the lack of capacity of the human to grasp vast quantities of information, relevant and crisp summaries are always desirable. Therefore, in this paper, we focus on generating a new blog entry containing the summary of multiple blogs on the same topic. Different approaches of clustering, modelling, content generation and summarization are applied to reach the intended goal. This system also eliminates the repetitive content giving savings on time and quantity, thereby making learning more comfortable and effective. Overall, a significant reduction in the number of words in the new blog generated by the system is observed by using the proposed novel methodology.


2020 ◽  
Vol 58 (7) ◽  
pp. 1227-1255
Author(s):  
Glenn Gordon Smith ◽  
Robert Haworth ◽  
Slavko Žitnik

We investigated how Natural Language Processing (NLP) algorithms could automatically grade answers to open-ended inference questions in web-based eBooks. This is a component of research on making reading more motivating to children and to increasing their comprehension. We obtained and graded a set of answers to open-ended questions embedded in a fiction novel written in English. Computer science students used a subset of the graded answers to develop algorithms designed to grade new answers to the questions. The algorithms utilized the story text, existing graded answers for a given question and publicly accessible databases in grading new responses. A computer science professor used another subset of the graded answers to evaluate the students’ NLP algorithms and to select the best algorithm. The results showed that the best algorithm correctly graded approximately 85% of the real-world answers as correct, partly correct, or wrong. The best NLP algorithm was trained with questions and graded answers from a series of new text narratives in another language, Slovenian. The resulting NLP algorithm model was successfully used in fourth-grade language arts classes for providing feedback to student answers on open-ended questions in eBooks.


2021 ◽  
Author(s):  
Nathan Ji ◽  
Yu Sun

The digital age gives us access to a multitude of both information and mediums in which we can interpret information. A majority of the time, many people find interpreting such information difficult as the medium may not be as user friendly as possible. This project has examined the inquiry of how one can identify specific information in a given text based on a question. This inquiry is intended to streamline one's ability to determine the relevance of a given text relative to his objective. The project has an overall 80% success rate given 10 articles with three questions asked per article. This success rate indicates that this project is likely applicable to those who are asking for content level questions within an article.


Sign in / Sign up

Export Citation Format

Share Document