A Spatio-Temporal Profiling Model for Person Identification

Author(s):  
Nghi Pham ◽  
Tru Cao
2019 ◽  
Vol 78 (19) ◽  
pp. 28157-28177 ◽  
Author(s):  
Banee Bandana Das ◽  
Pradeep Kumar ◽  
Debakanta Kar ◽  
Saswat Kumar Ram ◽  
Korra Sathya Babu ◽  
...  

Author(s):  
Yumi Iwashita ◽  
Ryosuke Baba ◽  
Koichi Ogawara ◽  
Ryo Kurazume

Author(s):  
Madeena Sultana ◽  
Padma Polash Paul ◽  
Marina L. Gavrilova

During the Internet era, millions of users are using Web-based Social Networking Sites (SNSs) such as MySpace, Facebook, and Twitter for communication needs. Social networking platforms are now considered a source of big data because of real-time activities of a large number of users. In addition to idiosyncratic personal characteristics, web-based social data may include person-to-person communication, profiles, patterns, and spatio-temporal information. However, analysis of social interaction-based data has not been studied from the perspective of person identification. In this chapter, the authors introduce for the first time the concept of using interaction-based features from online social networking platforms as a novel biometric. They introduce the concept of social behavioral biometric from SNSs to aid the identification process. Analysis of these novel biometric features and their potential use in various security and authentication applications are also presented. Such applications would pave the way for new directions in biometric research.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


2014 ◽  
Author(s):  
Mofza Algahtany ◽  
Lalit Kumar ◽  
Hassan M. Khormi

Sign in / Sign up

Export Citation Format

Share Document