A Record of Upper Hauterivian Climatic Variability in a Lagoonal Environment in the Lusitanian Basin

2014 ◽  
pp. 1303-1307
Author(s):  
C. Lézin ◽  
P. S. Caetano ◽  
P. Gonçalves ◽  
J. Rey ◽  
F. Rocha ◽  
...  
2012 ◽  
Vol 315-316 ◽  
pp. 24-37 ◽  
Author(s):  
Carine Lézin ◽  
Paulo S. Caetano ◽  
Paula Gonçalves ◽  
Jacques Rey ◽  
Fernando Rocha ◽  
...  

2019 ◽  
Vol 56 (2) ◽  
pp. 51
Author(s):  
A. N. Sharov ◽  
V. N. Nikulina ◽  
A. A. Maximov ◽  

2018 ◽  
Vol 48 (4) ◽  
pp. 420-428
Author(s):  
Johana Juliet Caballero Vanegas ◽  
Karen Bibiana Mejía Zambrano ◽  
Lizeth Manuela Avellaneda-Torres

ABSTRACT Understanding the impacts of agricultural practices on soil quality indicators, such as enzymatic activities, is of great importance, in order to advance in their diagnosis and sustainable management. This study aimed to evaluate the effect of ecological and conventional agricultural managements on enzymatic activities of a soil under coffee agroecosystems. The enzymatic activities were associated with the biogeochemical cycles of nitrogen (urease and protease), phosphorus (acid and alkaline phosphatase) and carbon (β-glucosidase), during the rainy and dry seasons. Physical-chemical soil proprieties were also assessed and related to resilience scores linked to the climatic variability reported for the areas under study. The activities of urease, alkaline and acid phosphatase and ß-glucosidase were statistically higher in ecological agroecosystems than in conventional ones. This may be attributed to the greater application of organic waste in the ecological environment, as well as to the absence of pesticides and synthetic fertilizers, which allow better conditions for the microbial activity. The resilience scores to the climate variability that showed the highest correlations with the assessed enzymatic activities were: the farmers' knowledge on soil microorganisms, non-use of pesticides and synthetic fertilizers and non-dependence on external supplies. It was concluded that the enzymatic activities are modified by the management systems, being specifically favored by the ecological management. This agroecosystem, in the long term, ensures an efficient use of the soil resources, with a lower degradation and contamination.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Keller ◽  
Somsubhra Chattopadhyay ◽  
Mikołaj Piniewski

Abstract Background Flow variability is considered a fundamental factor affecting riverine biota. Any alterations to flow regime can influence freshwater organisms, and this process is expected to change with the projected climate change. This systematic map, therefore, aims at investigating the impacts of natural (resulting from climatic variability), anthropogenic (resulting from direct human pressure), and climate change-induced flow variability on fish and macroinvertebrates of temperate floodplain rivers in Central and Western Europe. Particular focus will be placed on the effects of extreme low and high discharges. These rare events are known to regulate population size and taxonomic diversity. Methods All studies investigating the effects of flow variability on metrics concerning freshwater fish and macroinvertebrates will be considered in the map, particularly metrics such as: abundance, density, diversity, growth, migration, recruitment, reproduction, survival, or their substitutes, such as biomonitoring indices. Relevant flow variability will reflect (1) anthropogenic causes: dams, reservoirs, hydroelectric facilities, locks, levees, water abstraction, water diversion, land-use changes, road culverts; (2) natural causes: floods, droughts, seasonal changes; or (3) climate change. Geographically, the map will cover the ecoregion of Central and Western Europe, focusing on its major habitat type, namely “temperate floodplain rivers and wetlands”. The review will employ search engines and specialist websites, and cover primary and grey literature. No date, language, or document type restrictions will be applied in the search strategy. We expect the results to be primarily in English, although evidence (meeting all eligibility criteria) from other languages within the study area will also be included. We will also contact relevant stakeholders and announce an open call for additional information. Eligibility screening will be conducted at two levels: title and abstract, and full text. From eligible studies the following information will be extracted: the cause of flow variability, location, type of study, outcomes, etc. A searchable database containing extracted data will be developed and provided as supplementary material to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, and identify knowledge gaps and knowledge clusters, i.e. subtopics sufficiently covered by existing studies allowing full systematic review and meta-analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana I. García-Cervigón ◽  
Pedro F. Quintana-Ascencio ◽  
Adrián Escudero ◽  
Merari E. Ferrer-Cervantes ◽  
Ana M. Sánchez ◽  
...  

AbstractPopulation persistence is strongly determined by climatic variability. Changes in the patterns of climatic events linked to global warming may alter population dynamics, but their effects may be strongly modulated by biotic interactions. Plant populations interact with each other in such a way that responses to climate of a single population may impact the dynamics of the whole community. In this study, we assess how climate variability affects persistence and coexistence of two dominant plant species in a semiarid shrub community on gypsum soils. We use 9 years of demographic data to parameterize demographic models and to simulate population dynamics under different climatic and ecological scenarios. We observe that populations of both coexisting species may respond to common climatic fluctuations both similarly and in idiosyncratic ways, depending on the yearly combination of climatic factors. Biotic interactions (both within and among species) modulate some of their vital rates, but their effects on population dynamics highly depend on climatic fluctuations. Our results indicate that increased levels of climatic variability may alter interspecific relationships. These alterations might potentially affect species coexistence, disrupting competitive hierarchies and ultimately leading to abrupt changes in community composition.


2021 ◽  
pp. 1-15
Author(s):  
Catalina P. Tomé ◽  
S. Kathleen Lyons ◽  
Seth D. Newsome ◽  
Felisa A. Smith

Abstract The late Quaternary in North America was marked by highly variable climate and considerable biodiversity loss including a megafaunal extinction event at the terminal Pleistocene. Here, we focus on changes in body size and diet in Neotoma (woodrats) in response to these ecological perturbations using the fossil record from the Edwards Plateau (Texas) across the past 20,000 years. Body mass was estimated using measurements of fossil teeth and diet was quantified using stable isotope analysis of carbon and nitrogen from fossil bone collagen. Prior to ca. 7000 cal yr BP, maximum mass was positively correlated to precipitation and negatively correlated to temperature. Independently, mass was negatively correlated to community composition, becoming more similar to modern over time. Neotoma diet in the Pleistocene was primarily sourced from C3 plants, but became progressively more reliant on C4 (and potentially CAM) plants through the Holocene. Decreasing population mass and higher C4/CAM consumption was associated with a transition from a mesic to xeric landscape. Our results suggest that Neotoma responded to climatic variability during the terminal Pleistocene through changes in body size, while changes in resource availability during the Holocene likely led to shifts in the relative abundance of different Neotoma species in the community.


Sign in / Sign up

Export Citation Format

Share Document