Modeling of Air Pollution over the Ganges Basin and North-West Bay of Bengal in the Early Post-monsoon Season Using the NASA GEOS-5 Model

Author(s):  
Pavel Kishcha ◽  
Arlindo M. da Silva ◽  
Boris Starobinets ◽  
Pinhas Alpert
2014 ◽  
Vol 119 (3) ◽  
pp. 1555-1570 ◽  
Author(s):  
Pavel Kishcha ◽  
Arlindo M. da Silva ◽  
Boris Starobinets ◽  
Pinhas Alpert

MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 469-474
Author(s):  
G.K. DAS ◽  
S.K. MIDYA ◽  
G.C. DEBNATH ◽  
S.N. ROY

In this paper a simple relationship is employed to investigate relative impacts on the movement and landfall of tropical cyclone in the Bay of Bengal region when geopotential height of different troposphere levels is used as an input. Five tropical cyclone during pre-monsoon and post-monsoon season over the Bay of Bengal region has been selected for the study. The RS/RW data of coastal stations namely Kolkata (Dumdum), Dhaka, Agartala, Bhubaneswar, Visakhapatnam, Machlipatnam, Chennai and Karaikal has been collected for the period of the cyclones under study. The geopotential height of different standard levels has been plotted against the time for the stations for every cyclone. The study suggests that the cyclone moves towards and cross near the station having relatively steeper decrease in geopotential height upto mid tropical level followed by increased in geopotential height.


1984 ◽  
Vol 112 (8) ◽  
pp. 1640-1642 ◽  
Author(s):  
I. Subbaramayya ◽  
S. Rama Mohana Rao

2021 ◽  
Author(s):  
Zhi Li ◽  
Yuhuan Xue ◽  
Yue Fang ◽  
Kuiping Li

AbstractUnlike other tropical ocean basins, the Bay of Bengal (BoB) has two tropical cyclone (TC) seasons: a pre-monsoon season (Pre-MS) and a post-monsoon season (Post-MS). More interestingly, during the period from 1981 to 2016, the global maximum and minimum formation rates of super cyclones (SCs, categories 4 and 5) occurred in the Pre-MS and Post-MS, respectively, in the BoB. Methods including Butterworth filter, box difference index analysis and quantitative diagnosis were utilized herein to detect what and how background environmental factors cause significantly different SC formation rates between the Pre- and Post-MS. Diagnosis results revealed that the vertical temperature difference (VTD) mainly determines whether TCs can develop into SCs during the Post-MS, similar to Pre-MS. It’s in agreement with previous studies demonstrating that the VTD is controlled by the low-level temperature during the Post-MS but is determined by the upper-level temperature during the Pre-MS. The results also revealed that the background sea surface temperature is much higher in the Pre-MS than in the Post-MS and forces higher 1000 hPa-level air temperature. Additionally, there is higher saturated specific humidity (qs) due to the higher temperature in the Pre-MS. The differences in the bottom-level temperature and qs cooperate to predominantly contribute to the significant difference in Vpot2, which could denote the maximum potential intensity of TC, eventually leading to the remarkably different SC formation rates between the Pre- and Post-MS in the BoB.


Check List ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 083
Author(s):  
Palanisamy Satheeshkumar ◽  
Anisa B. Khan

Cantharus tranquebaricus (Gmelin, 1791) is reported for the first time in Pondicherry mangroves, southeast coast of India. Three adult specimens have been found in the Thengaithittu lagoon during post monsoon season of 2009. It is a characteristic species of molluscan fauna of the Bay of Bengal and the descriptions of the shell are provided.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasdeep Singh ◽  
Simerpreet Kaur Sehgal ◽  
Kuldip Singh ◽  
Didar Singh

AbstractThe present study focused on the seasonal investigation of hydro-geochemical characteristics of groundwater samples collected from the vicinity of three tributaries of the Beas River, Punjab, India. Total 45 samples were analyzed during the pre- and post-monsoon season for physico-chemical parameters and heavy metals along with health risk assessment. Results revealed that the majority of samples were below the permissible limits set by the BIS and WHO. The relative abundance of major cations was Ca2+ > Mg2+ > Na+ > K+ and Ca2+ > Na+ > Mg2+ > K+, while that of the major anions was HCO3− > SO42− > Cl− > CO32− in the pre- and post-monsoon season, respectively. Groundwater was alkaline and hard in nature at most of the sites. Bicarbonate content exceeded the desirable limit having an average concentration of 337.26 mg/L and 391.48 mg/L, respectively, during the pre- and post-monsoon season. Tukey’s multiple comparison test was applied for finding significant differences among samples at p < 0.05. The dominant hydrochemical face of water was Ca–Mg–HCO3 type. US salinity (USSL) diagram indicated that during the pre-monsoon, 48.9% samples were C2S1 type and remaining 51.1% were C3S1 type while during the post-monsoon all samples were C3S1 type. It indicates that groundwater of the study area is at risk of salinity hazards in future and is not to be ignored. Such monitoring studies are recommended to design future safety plans to combat soil and human health risks.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Somenath Dutta ◽  
Geena Sandhu ◽  
Sanjay G Narkhedkar ◽  
Sunitha Devi

The study discusses the energetic aspects of tropical cyclones formed over Arabian Sea (AS) and Bay of Bengal (BOB) during the period from 1991 till 2013 and aims at bringing out climatology of the energetics of tropical cyclones over Indian Seas. Total 88 cyclones that developed over the Indian Seas during the recent decade of 1991-2013 have been studied. These intense systems are categorized on the basis of their formation region and season of formation. It is seen that during the study period, the frequency of formation of cyclones over BOB is twice that over AS which is consistent with the climatology of the regions. Further, it is noticed that over both the regions, they are more frequently formed in the post monsoon period compared to pre monsoon. The trend analysis of the frequency of cyclones forming over both basins, season wise shows that the overall trend for both basins is of just decreasing type. However, for Arabian Sea; the decreasing trend is more apparent in the post monsoon season, whereas in the case of the Bay of Bengal the decreasing trend is more evident in the pre monsoon season. Various energy terms, their generation and conversion terms have been computed using NCEP/NCAR reanalysis data. Day to day quantitative analysis of these parameters is studied critically during various stages of the cyclones. The composites of these categorized systems are formed and studied. The formative, intensification and dissipation stages showed variations in their energy terms.


Sign in / Sign up

Export Citation Format

Share Document