Role of Omega-6 and Omega-3 Fatty Acids in Inflammatory Bowel Disease

Author(s):  
Kevan Jacobson ◽  
Philip C. Calder
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Kelly Issokson

Lay Summary Research suggests that diet plays a role in the development of inflammatory bowel disease (IBD). Eating more fiber, omega-3 fatty acids, and limiting food additives may lower risk. More research is needed to better understand diet factors that may protect against IBD.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chunxiang Ma ◽  
Reshma Vasu ◽  
Hu Zhang

Inflammatory bowel disease (IBD) is a complicated disease involving multiple pathogenic factors. The complex relationships between long-chain fatty acids (LCFAs) and the morbidity of IBD drive numerous studies to unravel the underlying mechanisms. A better understanding of the role of LCFAs in IBD will substitute or boost the current IBD therapies, thereby obtaining mucosal healing. In this review, we focused on the roles of LCFAs on the important links of inflammatory regulation in IBD, including in the pathogen recognition phase and in the inflammatory resolving phase, and the effects of LCFAs on immune cells in IBD.


2020 ◽  
Vol 47 (5) ◽  
pp. 907-915 ◽  
Author(s):  
Nirajan Shrestha ◽  
Simone L. Sleep ◽  
James S.M. Cuffe ◽  
Olivia J. Holland ◽  
Anthony V. Perkins ◽  
...  

2011 ◽  
Vol 17 (10) ◽  
pp. 2192-2204 ◽  
Author(s):  
Darla R. Shores ◽  
David G. Binion ◽  
Bruce A. Freeman ◽  
Paul R.S. Baker

2003 ◽  
Vol 48 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Marianne Haag

Objective: To review the role of essential fatty acids in brain membrane function and in the genesis of psychiatric disease. Method: Medline databases were searched for published articles with links among the following key words: essential fatty acids, omega-3 fatty acids, docosahexanoic acid, eicosapentanoic acid, arachidonic acid, neurotransmission, phospholipase A2, depression, schizophrenia, mental performance, attention-deficit hyperactivity disorder, and Alzheimer's disease. Biochemistry textbooks were consulted on the role of fatty acids in membrane function, neurotransmission, and eicosanoid formation. The 3-dimensional structures of fatty acids were obtained from the Web site of the Biochemistry Department, University of Arizona (2001). Results: The fatty acid composition of neuronal cell membrane phospholipids reflects their intake in the diet. The degree of a fatty acid's desaturation determines its 3-dimensional structure and, thus, membrane fluidity and function. The ratio between omega-3 and omega-6 polyunsaturated fatty acids (PUFAs), in particular, influences various aspects of serotoninergic and catecholaminergic neurotransmission, as shown by studies in animal models. Phospholipase A2 (PLA2) hydrolyzes fatty acids from membrane phospholipids: liberated omega-6 PUFAs are metabolized to prostaglandins with a higher inflammatory potential, compared with those generated from the omega-3 family. Thus the activity of PLA2 coupled with membrane fatty acid composition may play a central role in the development of neuronal dysfunction. Intervention trials in human subjects show that omega-3 fatty acids have possible positive effects in the treatment of various psychiatric disorders, but more data are needed to make conclusive directives in this regard. Conclusion: The ratio of membrane omega-3 to omega-6 PUFAs can be modulated by dietary intake. This ratio influences neurotransmission and prostaglandin formation, processes that are vital in the maintenance of normal brain function.


2016 ◽  
Vol 9 (16) ◽  
pp. 25-34
Author(s):  
Șerban Gligor ◽  
Răzvan Gligor

Abstract Polyunsaturated omega-3 and omega-6 fatty acids are essential fatty acids that cannot be produced by the body itself and therefore must be provided through nutrition. Omega-6 and particularly omega-3 fatty acids have important roles in the organism, contributing to the maintenance and promotion of health. The optimal proportion of omega-6/omega-3 fatty acids is 2:1, or even better 1:1. They are involved in normal growth and development, play a role in the prevention of coronary and cardiovascular diseases, of diabetes mellitus, of arterial hypertension, arthritis and cancer. Omega-3 fatty acids mainly have an anti-inflammatory effect, but also act as hypolipidemic and antithrombotic agents. A potential role of omega-3 fatty acids is that of increasing physical performance. Their role in the physical activity refers on one side to the global health of athletes and on the other side to their anti-inflammatory effect, as high intensity physical exercise induces increased free-radical production and microtraumas, with the induction of an inflammatory status. The anti-inflammatory effect of these fatty acids manifests through an increased production of endogenous antioxidant enzymes, through decreasing the production of prostaglandins metabolites, decreasing the production of leukotriene B4, etc. They are also effective on reducing muscle pain post eccentric exercise and on decreasing the severity of bronchoconstriction induced by exercise, as well as improving pulmonary function variables. In conclusion it seems that supplementing diets with omega-3 fatty acids, apart from having benefic effects on health and on the prevention and management of certain affections, proves to be a beneficial for physical activity and athletic performance.


Sign in / Sign up

Export Citation Format

Share Document