Crop Classification Using Different Color Spaces and RBF Neural Networks

Author(s):  
Guillermo Sandoval ◽  
Roberto A. Vazquez ◽  
Paulina Garcia ◽  
Jose Ambrosio
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Jin ◽  
Rencan Nie ◽  
Dongming Zhou ◽  
Quan Wang ◽  
Kangjian He

This paper proposed an effective multifocus color image fusion algorithm based on nonsubsampled shearlet transform (NSST) and pulse coupled neural networks (PCNN); the algorithm can be used in different color spaces. In this paper, we take HSV color space as an example, H component is clustered by adaptive simplified PCNN (S-PCNN), and then the H component is fused according to oscillation frequency graph (OFG) of S-PCNN; at the same time, S and V components are decomposed by NSST, and different fusion rules are utilized to fuse the obtained results. Finally, inverse HSV transform is performed to get the RGB color image. The experimental results indicate that the proposed color image fusion algorithm is more efficient than other common color image fusion algorithms.


2015 ◽  
Vol 24 (4) ◽  
pp. 425-436 ◽  
Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

AbstractHuman skin detection is an essential phase in face detection and face recognition when using color images. Skin detection is very challenging because of the differences in illumination, differences in photos taken using an assortment of cameras with their own characteristics, range of skin colors due to different ethnicities, and other variations. Numerous methods have been used for human skin color detection, including the Gaussian model, rule-based methods, and artificial neural networks. In this article, we introduce a novel technique of using the neural network to enhance the capabilities of skin detection. Several different entities were used as inputs of a neural network, and the pros and cons of different color spaces are discussed. Also, a vector was used as the input to the neural network that contains information from three different color spaces. The comparison of the proposed technique with existing methods in this domain illustrates the effectiveness and accuracy of the proposed approach. Tests were done on two databases, and the results show that the neural network has better precision and accuracy rate, as well as comparable recall and specificity, compared with other methods.


2019 ◽  
Vol 2019 (1) ◽  
pp. 153-158
Author(s):  
Lindsay MacDonald

We investigated how well a multilayer neural network could implement the mapping between two trichromatic color spaces, specifically from camera R,G,B to tristimulus X,Y,Z. For training the network, a set of 800,000 synthetic reflectance spectra was generated. For testing the network, a set of 8,714 real reflectance spectra was collated from instrumental measurements on textiles, paints and natural materials. Various network architectures were tested, with both linear and sigmoidal activations. Results show that over 85% of all test samples had color errors of less than 1.0 ΔE2000 units, much more accurate than could be achieved by regression.


Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 102-115
Author(s):  
Wenhui Si ◽  
Lingyan Zhao ◽  
Jianping Wei ◽  
Zhiguang Guan

Extensive research efforts have been made to address the motion control of rigid-link electrically-driven (RLED) robots in literature. However, most existing results were designed in joint space and need to be converted to task space as more and more control tasks are defined in their operational space. In this work, the direct task-space regulation of RLED robots with uncertain kinematics is studied by using neural networks (NN) technique. Radial basis function (RBF) neural networks are used to estimate complicated and calibration heavy robot kinematics and dynamics. The NN weights are updated on-line through two adaptation laws without the necessity of off-line training. Compared with most existing NN-based robot control results, the novelty of the proposed method lies in that asymptotic stability of the overall system can be achieved instead of just uniformly ultimately bounded (UUB) stability. Moreover, the proposed control method can tolerate not only the actuator dynamics uncertainty but also the uncertainty in robot kinematics by adopting an adaptive Jacobian matrix. The asymptotic stability of the overall system is proven rigorously through Lyapunov analysis. Numerical studies have been carried out to verify efficiency of the proposed method.


2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Jingtao Li ◽  
Yonglin Shen ◽  
Chao Yang

Due to the increasing demand for the monitoring of crop conditions and food production, it is a challenging and meaningful task to identify crops from remote sensing images. The state-of the-art crop classification models are mostly built on supervised classification models such as support vector machines (SVM), convolutional neural networks (CNN), and long- and short-term memory neural networks (LSTM). Meanwhile, as an unsupervised generative model, the adversarial generative network (GAN) is rarely used to complete classification tasks for agricultural applications. In this work, we propose a new method that combines GAN, CNN, and LSTM models to classify crops of corn and soybeans from remote sensing time-series images, in which GAN’s discriminator was used as the final classifier. The method is feasible on the condition that the training samples are small, and it fully takes advantage of spectral, spatial, and phenology features of crops from satellite data. The classification experiments were conducted on crops of corn, soybeans, and others. To verify the effectiveness of the proposed method, comparisons with models of SVM, SegNet, CNN, LSTM, and different combinations were also conducted. The results show that our method achieved the best classification results, with the Kappa coefficient of 0.7933 and overall accuracy of 0.86. Experiments in other study areas also demonstrate the extensibility of the proposed method.


2019 ◽  
Vol 41 (13) ◽  
pp. 3612-3625 ◽  
Author(s):  
Wang Qian ◽  
Wang Qiangde ◽  
Wei Chunling ◽  
Zhang Zhengqiang

The paper solves the problem of a decentralized adaptive state-feedback neural tracking control for a class of stochastic nonlinear high-order interconnected systems. Under the assumptions that the inverse dynamics of the subsystems are stochastic input-to-state stable (SISS) and for the controller design, Radial basis function (RBF) neural networks (NN) are used to cope with the packaged unknown system dynamics and stochastic uncertainties. Besides, the appropriate Lyapunov-Krosovskii functions and parameters are constructed for a class of large-scale high-order stochastic nonlinear strong interconnected systems with inverse dynamics. It has been proved that the actual controller can be designed so as to guarantee that all the signals in the closed-loop systems remain semi-globally uniformly ultimately bounded, and the tracking errors eventually converge in the small neighborhood of origin. Simulation example has been proposed to show the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document