A Real-Time Multibody Dynamics Model for an Unmanned Robot Vehicle Based on the Subsystem Synthesis Method

Author(s):  
Myoung-Ho Kim ◽  
Hee Chan Kang ◽  
Sung-Soo Kim
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 32171-32187
Author(s):  
Shaoyang Qiu ◽  
Hongxiang Ren ◽  
Haijiang Li ◽  
Yi Zhou ◽  
Delong Wang

10.26879/338 ◽  
2013 ◽  
Vol 16 (2) ◽  
Author(s):  
Eric Snively ◽  
John R. Cotton ◽  
Ryan Ridgely ◽  
Lawrence M. Witmer

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Joshua T. Cook ◽  
Laura E. Ray ◽  
James H. Lever

This paper presents a generalized, multibody dynamics model for a tracked vehicle equipped with a towing winch and control strategies that enhance vehicle mobility by regulating track slip based on real-time terrain characterization and automating winch use. The vehicle model is validated under conditions where no action is taken by the winch. Thereafter, two mobility enhancing control strategies are outlined. The first strategy regulates track slip to a real-time estimated value that generates maximum net traction. This is done by computing state-force estimates from a Kalman filter that are compared to terrain traction models using a Bayesian hypothesis selection approach. If the vehicle is traction limited and the first strategy fails, a second strategy that automates winch use is activated. Simulation results are shown for both scenarios.


Sign in / Sign up

Export Citation Format

Share Document