Investigation of Organic Rankine Cycle Performance with Variable Mixture Composition

Author(s):  
H. Barzegaravval ◽  
Ibrahim Dincer
Author(s):  
Concepción Paz ◽  
Eduardo Suarez ◽  
Miguel Concheiro ◽  
Antonio Diaz

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and has gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is therefore to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces paths, and tracks wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid) it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.


2018 ◽  
Vol 173 ◽  
pp. 37-45 ◽  
Author(s):  
Omid Nematollahi ◽  
Gholamreza Bamorovat Abadi ◽  
Dae Yeon Kim ◽  
Kyung Chun Kim

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1680
Author(s):  
Concepción Paz ◽  
Eduardo Suárez ◽  
Miguel Concheiro ◽  
Antonio Diaz

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and it gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is, therefore, to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces the paths, and tracks the wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid), it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.


Author(s):  
Zhixin Sun ◽  
Shujia Wang ◽  
Fuquan Xu ◽  
Tielong Wang

Natural gas is considered as a green fuel due to its low environmental impact. LNG contains a large amount of cold exergy and must be regasified before further utilization. ORC (Organic Rankine Cycle) has been proven to be a promising solution for both low grade heat utilization and LNG cold exergy recovery. Due to the great temperature difference between the heat source and LNG, the efficiency of one-stage ORC is relatively small. Hence, some researchers move forward to a two-stage Rankine cycle. Working fluid plays a quite important role in the cycle performance. Working fluid selection of a two-stage ORC is much more challenging than that of a single-stage ORC. In this paper, a two-stage ORC is studied. Heat source temperatures of 100,150 and 200°C are investigated. 20 substances are selected as potential candidates for both the high and low Rankine cycles. The evaporating, condensing and turbine inlet temperatures of both Rankine cycles are optimized by PSO (Particle Swarm Optimization). The results show that the best combination for heat source temperature of 100°C is R161/R218 with the maximum exergy efficiency of 35.27%. The best combination for 150°C is R161/RC318 with the maximum efficiency of 37.84% and ammonia/ammonia with the maximum efficiency of 39.15% for 200°C. Fluids with intermediate critical temperature, lower triple point temperature and lower normal boiling temperature are good candidates.


Author(s):  
Murat Erbas ◽  
Mehmet Alper Sofuoglu ◽  
Atilla Biyikoglu ◽  
Ibrahim Uslan

In this study, low temperature Organic Rankine Cycle (ORC) systems with single and two-stage turbine are proposed for the production of electricity. The refrigerant R-134a is selected as working fluid based on peak temperature of the cycle for solar and geothermal applications. The design criteria of ORC system is introduced and explained in detail. The radial inflow turbine is selected to satisfy the design requirements. The cycle performance is taken as a key point in the design criteria. The system performance map is constructed based on both velocity triangles and approximate efficiency of turbine. The procedures for turbine and cycle design are introduced in detail. The components of cycle and turbine are modeled using baseline correlations via real gas tables and macros created on Excel for the refrigerant, R134a. Finally, the turbine geometry is optimized to attain maximum turbine efficiency via MATLAB optimization toolbox.


2007 ◽  
Vol 129 (3) ◽  
pp. 243-247 ◽  
Author(s):  
H. D. Madhawa Hettiarachchi ◽  
Mihajlo Golubovic ◽  
William M. Worek ◽  
Yasuyuki Ikegami

The possibility of exploiting low-temperature heat sources has been of great significance with ever increasing energy demand. Optimum and cost-effective design of the power cycles provide a means of utilization of low-temperature heat sources which might otherwise be discarded. In this analysis, the performance of the Kalina cycle system 11 (KCS11) is examined for low-temperature geothermal heat sources and is compared with an organic Rankine cycle. The effect of the ammonia fraction and turbine inlet pressure on the cycle performance is investigated in detail. Results show that for a given turbine inlet pressure, an optimum ammonia fraction can be found that yields the maximum cycle efficiency. Further, the maximum cycle efficiency does not necessarily yield the optimum operating conditions for the system. In addition, it is important to consider the utilization of the various circulating media (i.e., working fluid, cooling water, and heat resource) and heat exchanger area per unit power produced. For given conditions, an optimum range of operating pressure and ammonia fraction can be identified that result in optimum cycle performance. In general, the KCS11 has better overall performance at moderate pressures than that of the organic Rankine cycle.


2020 ◽  
Vol 4 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Rabah Touaibi ◽  
Hasan Koten ◽  
Ozlem Boydak

This work is an energy study of an organic Rankine cycle (ORC) for the recovery of thermal energy by comparing three organic fluids. This cycle is considered to be a promising cycle for the conversion of heat into mechanical energy suitable for low temperature heat sources; it uses more volatile organic fluids than water, which generally has high molecular weights, thus allowing operating pressures at temperatures lower than those of the traditional Rankine cycle. A thermodynamic model was developed using the Engineering Equation Solver (EES) software to determine its performance using different working fluids (toluene, R245fa and R123) under the same operating conditions, taking into account the effect of certain operating parameters and the selection of organic fluids on cycle performance. The results obtained show that the toluene organic fluid has the best thermal efficiency of the cycle compared to the other fluids; 14.38% for toluene, 13.68% for R123 and 13.19 for R245fa.


Sign in / Sign up

Export Citation Format

Share Document