scholarly journals Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC

Author(s):  
Concepción Paz ◽  
Eduardo Suarez ◽  
Miguel Concheiro ◽  
Antonio Diaz

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and has gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is therefore to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces paths, and tracks wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid) it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1680
Author(s):  
Concepción Paz ◽  
Eduardo Suárez ◽  
Miguel Concheiro ◽  
Antonio Diaz

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and it gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is, therefore, to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces the paths, and tracks the wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid), it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.


2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Author(s):  
Quazi E. Hussain ◽  
David R. Brigham

The Rankine cycle is used commercially to generate power in stationary power plants using water as the working fluid. For waste heat recovery applications, where the temperature is lower, water is typically replaced by a carefully selected organic fluid. This work is based on using the waste heat in an automobile to generate electricity using the Organic Rankine cycle (ORC) with R245fa (1, 1, 1, 3, 3 penta-fluoropropane) as the working fluid. The electricity thus generated can be used to drive the accessory load or charge the battery which in any case helps improve the fuel economy. A simple transient numerical model has been developed that is capable of capturing the main effects of this cycle. Results show that exhaust heat alone can generate enough electricity that is capable of bringing about an improvement to the fuel economy under transient drive cycle conditions. Power output during EPA Highway drive cycle is much higher than EPA City due to higher exhaust mass flow rate and temperature. Time needed to reach operating conditions or in other words, the warm-up time plays an important role in the overall drive cycle output. Performance is found to improve significantly when coolant waste heat is used in conjunction with the residual exhaust heat to pre-heat the liquid. A sizing study is also performed to keep the cost, weight, and packaging requirement down without sacrificing too much power. With careful selection of heat exchanger design parameters, it has been demonstrated that the backpressure on the engine can be actually lowered by cooling off the exhaust gas. This lower backpressure will further boost the fuel economy gained by the electricity produced by the Rankine bottoming cycle.


Author(s):  
Uzziel Caldiño-Herrera ◽  
Delfino Cornejo-Monroy ◽  
Shehret Tilvaldyev ◽  
José Omar Dávalos-Ramírez

In this paper we present the implementation of a system based on organic Rankine cycle coupled to a heat discharge of an industrial process. Waste heat is used as an energy source input to the system, which uses this energy to evaporate an organic fluid and expand it in a turbine, where mechanical power is produced. The system consists of 4 processes and the heat exchanger is specially analyzed. According to the availability of heat energy, the heat exchanger was designed to achieve the maximum efficiency in the energy system. Likewise, the maximum thermal efficiency of the ORC system is calculated as a function of the available energy, the energy source temperature and the available mass flow rate. By these calculations, the working fluid and the suitable operating conditions were selected through a thermodynamic analysis.


Author(s):  
Arun Kumar Narasimhan ◽  
Diego Guillen Perez ◽  
D. Yogi Goswami

Abstract Scroll expanders are generally used for low temperature power generation applications due to their inherently small built-in volume ratio. The working fluid and operating conditions play an important role in the expander performance as well as its physical size and volume ratio. Hence, a comparative study of scroll expander performance was carried out between two different working fluids, R433C and supercritical (s-CO2). The s-CO2 Brayton cycle achieved a maximum cycle efficiency of 13.6% at an expander supply pressure of 11 MPa. Two separate scroll geometries were modeled for supercritical Organic Rankine Cycle (SORC) using R433C and s-CO2 Brayton cycle for the operating conditions that provided the maximum cycle performance. The s-CO2 scroll geometry achieved a maximum expander efficiency of 80% with a volume ratio of 2.5 and a diameter of 19 cm. The high inlet temperatures required a much higher volume ratio of 6.2 and scroll diameter of 30 cm for the R433C based SORC leading to greater leakages and lower expander efficiency of 62%. The comparative study shows that s-CO2 is better suited for scroll expander than R433C at such high expander supply temperatures.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3615 ◽  
Author(s):  
James Bull ◽  
James M. Buick ◽  
Jovana Radulovic

Approximately 45% of power generated by conventional power systems is wasted due to power conversion process limitations. Waste heat recovery can be achieved in an Organic Rankine Cycle (ORC) by converting low temperature waste heat into useful energy, at relatively low-pressure operating conditions. The ORC system considered in this study utilises R-1234yf as the working fluid; the work output and thermal efficiency were evaluated for several operational pressures. Plate and shell and tube heat exchangers were analysed for the three sections: preheater, evaporator and superheater for the hot side; and precooler and condenser for the cold side. Each heat exchanger section was sized using the appropriate correlation equations for single-phase and two-phase fluid models. The overall heat exchanger size was evaluated for optimal operational conditions. It was found that the plate heat exchanger out-performed the shell and tube in regard to the overall heat transfer coefficient and area.


2011 ◽  
Vol 201-203 ◽  
pp. 585-589 ◽  
Author(s):  
Hong Guang Zhang ◽  
En Hua Wang ◽  
Ming Gao Ouyang ◽  
Bo Yuan Fan

Energy saving and environment protection are two most important issues that today’s internal combustion engine industry must tackle with. Lots of heat energy waste with the exhaust gas when the engine is running. Organic Rankine cycle (ORC) is a good method to recover the waste heat of the engine exhaust. In this paper, the mathematical model of ORC was built up in Matlab and the parameters were optimized using genetic algorithm (GA). Eight pure component organic working fluids were selected and compared. The results indicate that the evaporating pressure of the working fluid and the condensing temperature are two important parameters for ORC; the super heater also can enhance the system thermal efficiency slightly.


Author(s):  
C. Somayaji ◽  
P. J. Mago ◽  
L. M. Chamra

This paper presents a second law analysis and optimization for the use of Organic Rankine Cycle “ORC” to convert waste energy to power from low grade heat sources. The working fluids used in this study are organic substances which have a low boiling point and a low latent heat for using low grade waste heat sources. The organic working fluids under investigation are R134a and R113 and their results are compared with those of ammonia and water under similar operating conditions. A combined first and second law analysis is performed by varying some system operating parameters at various reference temperatures. Some of the results show that the efficiency of ORC is typically below 20% depending on the temperatures and matched working fluid. In addition, it has been found that organic working fluids are more suited for heat recovery than water for low temperature applications, which justifies the use of organic working fluids at the lower waste source temperatures.


Sign in / Sign up

Export Citation Format

Share Document