The Loss Tangent of Visco-Elastic Models

Author(s):  
Franz Konstantin Fuss
Keyword(s):  
2003 ◽  
Vol 783 ◽  
Author(s):  
Charles E Free

This paper discusses the techniques that are available for characterising circuit materials at microwave and millimetre wave frequencies. In particular, the paper focuses on a new technique for measuring the loss tangent of substrates at mm-wave frequencies using a circular resonant cavity. The benefits of the new technique are that it is simple, low cost, capable of good accuracy and has the potential to work at high mm-wave frequencies.


2009 ◽  
Vol 12 ◽  
pp. 161-170 ◽  
Author(s):  
Ali Kabiri ◽  
Mohammed M. Bait-Suwailam ◽  
Mohammad H. Kermani ◽  
Omar M. Ramahi
Keyword(s):  

Author(s):  
Manindra Kumar ◽  
Neelabh Srivastava

Background and Objective: Zwitterionic polymer electrolyte has been successfully synthesized using NH4PF6 salt. The conductivity of the synthesized polymer membrane is found to be of the order of 10-3Scm-1. Dielectric and Modulus properties of the polymer electrolyte have also been studied which showed well relaxation peaks with both temperature and salt concentrations. Result: This is well depicted with the loss tangent curve. Debye type relaxation behavior has observed from the electric modulus. Conclusion: Frequency dependent conductivity data (fitted with Jonscher's power law equation) confirmed the presence of NCL/SLPL type behavior in the studied frequency range.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3230
Author(s):  
Theeranuch Nachaithong ◽  
Narong Chanlek ◽  
Pairot Moontragoon ◽  
Prasit Thongbai

(Co, Nb) co-doped rutile TiO2 (CoNTO) nanoparticles with low dopant concentrations were prepared using a wet chemistry method. A pure rutile TiO2 phase with a dense microstructure and homogeneous dispersion of the dopants was obtained. By co-doping rutile TiO2 with 0.5 at.% (Co, Nb), a very high dielectric permittivity of ε′ » 36,105 and a low loss tangent of tanδ » 0.04 were achieved. The sample–electrode contact and resistive outer-surface layer (surface barrier layer capacitor) have a significant impact on the dielectric response in the CoNTO ceramics. The density functional theory calculation shows that the 2Co atoms are located near the oxygen vacancy, creating a triangle-shaped 2CoVoTi complex defect. On the other hand, the substitution of TiO2 with Nb atoms can form a diamond-shaped 2Nb2Ti complex defect. These two types of complex defects are far away from each other. Therefore, the electron-pinned defect dipoles cannot be considered the primary origins of the dielectric response in the CoNTO ceramics. Impedance spectroscopy shows that the CoNTO ceramics are electrically heterogeneous, comprised of insulating and semiconducting regions. Thus, the dielectric properties of the CoNTO ceramics are attributed to the interfacial polarization at the internal insulating layers with very high resistivity, giving rise to a low loss tangent.


Author(s):  
Jakkree Boonlakhorn ◽  
Narong Chanlek ◽  
Jedsada Manyam ◽  
Sriprajak Krongsuk ◽  
Pornjuk Srepusharawoot ◽  
...  
Keyword(s):  

Author(s):  
A. Ege Engin ◽  
Abdemanaf Tambawala ◽  
Madhavan Swaminathan ◽  
Swapan Bhattacharya ◽  
Pranabes Pramanik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document