First Experimental Testing of a Dynamic Minimum Tension Control (DMTC) for Cable Driven Parallel Robots

Author(s):  
Saeed Abdolshah ◽  
Giulio Rosati
Author(s):  
A. Zubizarreta ◽  
E. Portillo ◽  
I. Cabanes ◽  
M. Marcos ◽  
Ch. Pinto

Due to their high performance when executing high-speed and accurate tasks, parallel robots have became the focus of many researchers and companies. However, exploiting the full potential of these robots requires a correct mechatronic design, in which the designed mechanism has to be controlled by a suitable control law in order to achieve the maximum performance. In this paper a novel Validation and Control Environment (VALIDBOT) is proposed as a support for the control design and experimental testing stages of these robots. The proposed open and flexible environment is designed to meet rapid prototyping requirements, offering a high level framework for both students and researchers. The capabilities of the environment are illustrated with an application case based on a 5R parallel robot prototype in which a modified CTC controller is tested.


2020 ◽  
Author(s):  
Han Yuan ◽  
Hao An ◽  
Yongqing Zhang ◽  
Wenfu Xu

Abstract Cable-driven parallel robots (CDPRs) have the characteristics of reconfigurability, which endows CDPRs with flexible workspace, freely configurable degrees of freedom and various configurations, greatly expanding their range of applications. Modular design provides great convenience and feasibility for the realization of reconfiguration, which is a key issue of reconfiguration research. However, most existing CDPRs have problems of low modularity and low system integration, which brings inconvenience to the realization of reconfiguration. In this paper, a highly integrated and high precision cable-driving module is designed, which can accurately control the length and tension of the cable. In addition, experimental verification is performed. The single-module experiment shows that the module has good ability for cable length and cable tension control. The cable length control error is less than 0.2mm, and the cable tension control error is less than 0.8N. Furthermore, based on the proposed module, a CDPR with 8 cables and 6 degrees of freedom is constructed rapidly. The open-loop tracking error of the robot is measured by laser tracker. Results show that the tracking error is less than 4.5mm and the Root-Mean-Square-Error (RMSE) is 2.1mm. Besides, the compliance control experiment of the robot shows that the tracking error in impedance control mode is less than 2mm, and the RMSE is 0.95mm, and the drag force in teaching mode is less than 2.5N, which demonstrates good follow-up performance. The proposed compact cable-driving module with high precision could be useful for the design and rapid construction of reconfigurable CDPRs.


PCI Journal ◽  
2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Cameron D. Murray ◽  
Brittany N. Cranor ◽  
Royce W. Floyd ◽  
Jin-Song Pei

2019 ◽  
Author(s):  
Joppe Rutten ◽  
Jens Verschoren ◽  
Nesrin Ozalp ◽  
Cédric Ophoff ◽  
David Moens

2018 ◽  
Vol 6 (32) ◽  
pp. 17-25
Author(s):  
S.V. Slastunov ◽  
◽  
A.A. Meshkov ◽  
E.V. Mazanik ◽  
I.A. Komissarov ◽  
...  

2001 ◽  
Vol 84 (3) ◽  
pp. 39-46
Author(s):  
Hitoshi Furuta ◽  
Masakatsu Kaneyoshi ◽  
Hiroshi Tanaka ◽  
Eiichi Watanabe

Sign in / Sign up

Export Citation Format

Share Document