scholarly journals Design and Experiment of a Compact Cable-Driving Module for Reconfigurable Cable-Driven Parallel Robots

2020 ◽  
Author(s):  
Han Yuan ◽  
Hao An ◽  
Yongqing Zhang ◽  
Wenfu Xu

Abstract Cable-driven parallel robots (CDPRs) have the characteristics of reconfigurability, which endows CDPRs with flexible workspace, freely configurable degrees of freedom and various configurations, greatly expanding their range of applications. Modular design provides great convenience and feasibility for the realization of reconfiguration, which is a key issue of reconfiguration research. However, most existing CDPRs have problems of low modularity and low system integration, which brings inconvenience to the realization of reconfiguration. In this paper, a highly integrated and high precision cable-driving module is designed, which can accurately control the length and tension of the cable. In addition, experimental verification is performed. The single-module experiment shows that the module has good ability for cable length and cable tension control. The cable length control error is less than 0.2mm, and the cable tension control error is less than 0.8N. Furthermore, based on the proposed module, a CDPR with 8 cables and 6 degrees of freedom is constructed rapidly. The open-loop tracking error of the robot is measured by laser tracker. Results show that the tracking error is less than 4.5mm and the Root-Mean-Square-Error (RMSE) is 2.1mm. Besides, the compliance control experiment of the robot shows that the tracking error in impedance control mode is less than 2mm, and the RMSE is 0.95mm, and the drag force in teaching mode is less than 2.5N, which demonstrates good follow-up performance. The proposed compact cable-driving module with high precision could be useful for the design and rapid construction of reconfigurable CDPRs.

2021 ◽  
pp. 1-63
Author(s):  
Hao An ◽  
Yongqing Zhang ◽  
Han Yuan ◽  
Wenfu Xu ◽  
Xin Wang

Abstract Cable-driven parallel robots (CDPRs) have the characteristic of easy deployment, which endows CDPRs with flexible workspace, freely configurable degrees of freedom (DOF), and various configurations, greatly expanding their range of applications. Modular design provides excellent convenience and feasibility for deployment, which is a crucial issue of CDPR design. A highly integrated cable-driving module is designed in this paper, which includes the winding bobbin, servo motor, force sensor, external encoder, electromagnetic brake, as well as other devices. Experiments show that the maximum cable length control error is less than 0.16%, and the maximum cable tension control error is less than 8% in the back-and-forward rotation test. Furthermore, using the proposed module, a CDPR with eight cables and 6 DOFs is constructed rapidly, whose dimension is 850×850×650 mm3. Results show that the robot's trajectory errors are all less than 4.5 mm, and the Root-Mean-Square-Error (RMSE) is 2.1 mm. Besides, the compliance control experiments show that the robot's tracking error in impedance control mode is less than 2 mm, and the RMSE is 0.95 mm. Moreover, the dragging force in teaching mode is less than 2.5 N, which demonstrates good follow-up performance. The proposed compact cable-driving module with high precision could be helpful for the design and rapid deployment of modular CDPRs.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 417-420 ◽  
Author(s):  
Eric Pernette ◽  
Simon Henein ◽  
Ivo Magnani ◽  
Reymond Clavel

During the past few years, there has been an increasing demand in the field of precision engineering for fine motion in multi-degrees of freedom systems. These applications motivated the development of a new robotics field called microrobotics. In this paper, we review both the design guidelines for microrobots and the advantages of using parallel robots in very high precision applications. Parallel micromanipulators using elastic joints as well as structures manufactured in single solid and metallic bellows are introduced.


2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880384 ◽  
Author(s):  
Jonqlan Lin ◽  
Chi Ying Wu ◽  
Julian Chang

Cable-driven parallel robots comprise driven actuators that allow controlled cables to act in parallel on an end-effector. Such a robotic system has a potentially large reachable workspace, large load capacity, high payload-to-weight ratio, high reconfigurability, and low inertia, relative to rigid link serial and parallel robots. In this work, a multi-degrees-of-freedom cable-suspended robot that can carry out pick-and-place tasks in large workspaces with heavy loads is designed. The proposed cable-driven parallel robot is composed of a rigid frame and an end-effector that is suspended from eight cables—four upper cables and four lower cables. The lengths of the cables are computed from the given positions of the suspended end-effector using a kinematic model. However, most multi-cable-driven robots suffer from interference among the cables, requiring a complex control methodology to find a target goal. Owing to this issue with cable-driven parallel robots, the whole control structure decomposes positioning control missions and allocates them into upper level and lower level. The upper level control is responsible for tracking the suspended end-effector to the target region. The lower level control makes fine positional modifications. Experimental results reveal that the hybrid control mode notably improves positioning performance. The wide variety of issues that are considered in this work apply to aerostats, towing cranes, locomotion interfaces, and large-scale manufacturing that require cable-driven parallel robots.


2001 ◽  
Vol 84 (3) ◽  
pp. 39-46
Author(s):  
Hitoshi Furuta ◽  
Masakatsu Kaneyoshi ◽  
Hiroshi Tanaka ◽  
Eiichi Watanabe

Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2021 ◽  
pp. 1-20
Author(s):  
Hussein Hussein ◽  
Joao Cavalcanti Santos ◽  
Jean-Baptiste Izard ◽  
Marc Gouttefarde

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 60
Author(s):  
Christoph Martin ◽  
Marc Fabritius ◽  
Johannes T. Stoll ◽  
Andreas Pott

Accuracy improvement is an important research topic in the field of cable-driven parallel robots (*CDPRS). One reason for inaccuracies of *CDPRS are deviations in the cable lengths. Such deviations can be caused by the elongation of the cable due to its elasticity or creep behavior. For most common *CDPRS, the cable lengths are controlled using motor encoders of the winches, without feedback about the actual elongation of the cables. To address this problem, this paper proposes a direct cable length measurement sensor based on a laser distance sensor. We present the mechanical design, the first prototype and an experimental evaluation. As a result, the measurement principle works well and the accuracy of the measured cable lengths is within −2.32 mm to +1.86 mm compared to a range from −5.19 mm to +6.02 mm of the cable length set with the motor encoders. The standard deviation of the cable length error of the direct cable length measurement sensor is 58% lower compared to the one set with the motor encoders. Equipping all cables of the cable robot with direct cable length measurement sensors results in the possibility to correct cable length deviations and thus increase the accuracy of *CDPRS. Furthermore, it enables new possibilities like the automatic recalibration of the home pose.


Author(s):  
Saeed Behzadipour

A new hybrid cable-driven manipulator is introduced. The manipulator is composed of a Cartesian mechanism to provide three translational degrees of freedom and a cable system to drive the mechanism. The end-effector is driven by three rotational motors through the cables. The cable drive system in this mechanism is self-stressed meaning that the pre-tension of the cables which keep them taut is provided internally. In other words, no redundant actuator or external force is required to maintain the tensile force in the cables. This simplifies the operation of the mechanism by reducing the number of actuators and also avoids their continuous static loading. It also eliminates the redundant work of the actuators which is usually present in cable-driven mechanisms. Forward and inverse kinematics problems are solved and shown to have explicit solutions. Static and stiffness analysis are also performed. The effects of the cable’s compliance on the stiffness of the mechanism is modeled and presented by a characteristic cable length. The characteristic cable length is calculated and analyzed in representative locations of the workspace.


2021 ◽  
Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.


Author(s):  
De-Ning Song ◽  
Jian-Wei Ma ◽  
Zhen-Yuan Jia ◽  
Feng-Ze Qin ◽  
Xiao-Xuan Zhao

The tracking and contouring errors are inevitable in real computer numerical control contour following because of the reasons such as servo delay and dynamics mismatch. In order to improve the motion accuracy, this paper proposes a synergistic real-time compensation method of tracking and contouring errors for precise parametric curve following of the computer numerical control systems. The tracking error for each individual axis is first compensated, by using the feed-drive models with the consideration of model uncertainties, to enhance the tracking performances of all axes. Further, the contouring error is estimated and compensated to improve the contour accuracy directly, where a high-precision contouring-error estimation algorithm, based on spatial circular approximation of the desired contour neighboring the actual motion position, is presented. Considering that the system structure is coupled after compensation, the stability of the coupled system is analyzed for design of the synergistic compensator. Innovative contributions of this study are that not only the contouring-error can be estimated with a high precision in real time, but also the tracking and contouring performances can be simultaneously improved although there exist modeling errors and disturbances. Simulation and experimental tests demonstrate the effectiveness and advantages of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document