Resistance of MAX 6325 Reference Voltage Source on Supply Voltage Variation

Author(s):  
Paweł Nowak ◽  
Andrzej Juś ◽  
Roman Szewczyk ◽  
Michał Nowicki ◽  
Wojciech Winiarski
2014 ◽  
Vol 687-691 ◽  
pp. 3489-3493
Author(s):  
Wei Qu ◽  
Li Mei Hou ◽  
Xiao Xin Sun ◽  
Jing Yu Sun ◽  
Liang Yu Li

A high-performance bandgap reference voltage source design method is proposed in this paper, according to the shortcomings of traditional bandgap reference voltage source. This method combined CSMC 0.35μm CMOS process with Aether software technology, enabling to improve the bandgap reference source op amp performance and take into account accuracy and stability of the system. From the experimental results: this bandgap reference voltage source output voltage has changed about 63 mV when the temperature varied from to , and the line regulator is 0.4mV/V when the power supply voltage varied from 3.2V to 3.3V. This system has advantages of high accuracy and good stability.


2018 ◽  
Vol 201 ◽  
pp. 02002
Author(s):  
Hao-Ping Chan ◽  
Yu-Cherng Hung

By using 0.35-um CMOS process, this work achieves a design of analogous band-gap reference voltage circuit with low temperature coefficient. The proposed circuit operates at 3V and generates a reference current of 44 uA. The HSPICE simulation results show the temperature coefficient of this circuit is 23 ppm/°C at range of -10 °C to 100 °C, and the line regulation (the ratio of output current variation to supply voltage variation) is estimated as 1.95 uA/V from supply voltage variation of 3 V to 5 V. The experimental chip is fabricated and measured. The circuit provides adjustable capability for output voltage among temperature variation of -10 - 100 °C. The chip area is 534 × 695 um2. In this new design, the operational amplifier is not necessary. The chip design effort can be great reduced.


Sign in / Sign up

Export Citation Format

Share Document