Using the Multi-instance Learning Method to Predict Protein-Protein Interactions with Domain Information

Author(s):  
Yan-Ping Zhang ◽  
Yongliang Zha ◽  
Xinrui Li ◽  
Shu Zhao ◽  
Xiuquan Du
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mayumi Kamada ◽  
Yusuke Sakuma ◽  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Proteins in living organisms express various important functions by interacting with other proteins and molecules. Therefore, many efforts have been made to investigate and predict protein-protein interactions (PPIs). Analysis of strengths of PPIs is also important because such strengths are involved in functionality of proteins. In this paper, we propose several feature space mappings from protein pairs using protein domain information to predict strengths of PPIs. Moreover, we perform computational experiments employing two machine learning methods, support vector regression (SVR) and relevance vector machine (RVM), for dataset obtained from biological experiments. The prediction results showed that both SVR and RVM with our proposed features outperformed the best existing method.


2014 ◽  
Vol 10 (12) ◽  
pp. 3147-3154 ◽  
Author(s):  
Abbasali Emamjomeh ◽  
Bahram Goliaei ◽  
Javad Zahiri ◽  
Reza Ebrahimpour

We developed a novel method to predict human–HCV protein–protein interactions, the most comprehensive study of this type.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


Sign in / Sign up

Export Citation Format

Share Document