Electrodeposited Zn-Nanoparticles Composite Coatings for Corrosion Protection of Steel

2015 ◽  
pp. 333-353 ◽  
Author(s):  
Liana Maria Muresan
2014 ◽  
Vol 53 (49) ◽  
pp. 18873-18883 ◽  
Author(s):  
Robert V. Dennis ◽  
Lasantha T. Viyannalage ◽  
Jeffrey P. Aldinger ◽  
Tapan K. Rout ◽  
Sarbajit Banerjee

2017 ◽  
Vol 24 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Murat Ates

AbstractMethylcarbazole (MCz) and its nanocomposites with Montmorillonite nanoclay and Zn nanoparticles were chemically synthesized on a stainless steel (SS304) electrode. The modified electrode was characterized by optical microscope, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy-attenuated transmission reflectance (FTIR-ATR), four-point probe, and electrochemical impedance spectroscopy (EIS) analysis. The synthesized stainless steel/poly(methylcarbazole) (SS/P(MCz)), stainless steel/poly(methylcarbazole)/nanoclay (SS/P(MCz)/nanoclay), and stainless steel/poly(methylcarbazole)/nanoZn (SS/P(MCz)/nanoZn) were studied by potentiodynamic polarization curves. The protective behavior of these coatings in 3.5% NaCl as the corrosion medium was investigated using Tafel polarization curves, as well as electrochemical impedance spectroscopy. The corrosion protection parameters were also supported by EIS and an equivalent circuit model of Rs(Qc(Rc(QpRct))). The corrosion current of the SS/P(MCz)/nanoclay samples was found to be much lower (icorr=0.010 μA×cm-2) than that of SS/P(MCz)/nanoZn (icorr=0.031 μA×cm-2) and pure SS/P(MCz) samples. These results reveal that chemically synthesized SS/P(MCz), SS/P(MCz)/nanoclay, and SS/P(MCz)/nanoZn nanocomposite film coating have high corrosion protection efficiency (PE=99.56%, 99.89%, and 99.67%, respectively). Thus, based on the study findings, we posit that nanoclay and Zn nanoparticles possess favorable barrier properties, which can be employed in order to achieve improvements in chemical corrosion protection through P(MCz) coating.


2017 ◽  
Vol 69 (3) ◽  
pp. 402-417 ◽  
Author(s):  
Pradeep Sambyal ◽  
Gazala Ruhi ◽  
Monu Mishra ◽  
Govind Gupta ◽  
Sundeep K. Dhawan

2020 ◽  
Vol 20 (10) ◽  
pp. 6389-6395 ◽  
Author(s):  
Chuan-Chun Li ◽  
Tang-Yu Lai ◽  
Te-Hua Fang

In this study, corrosion-resistant composite coatings were produced by incorporating zinc (Zn) nanoparticles in an epoxy resin and a hybrid silicone resin. While performing sodium chloride saltspray tests, the corrosion performance of the nano-composite coatings was evaluated by applying these corrosion-resistant composite coatings on a carbon steel substrate. The nano-composite coatings on the substrates were characterized by an adhesion test, scanning electron microscope (SEM), and transmission electron microscope (TEM) with energy-dispersive X-ray spectroscopy (EDX). The results of the salt-spray tests showed that the Zn nanoparticles in the epoxy and hybrid silicone resins could react with permeated oxygen, thereby improving the anticorrosion properties of the Zn nano-composites. The corroded area of the epoxy resin samples decreased from more than 80% without Zn doping to less than 5% in a 3000-ppm Zn-doped sample after a 500-h saltspray test. An evaluation of the bactericidal properties showed that the Zn/epoxy and Zn/hybrid silicone resin nano-composites with at least 360 ppm of Zn nanoparticles exhibited bactericidal ability, which remarkably increased with the Zn nanoparticles content. The corrosion-resistant properties improved with the addition of Zn nano-composites coatings.


2018 ◽  
Vol 36 (2) ◽  
pp. 155-225 ◽  
Author(s):  
András Gergely

AbstractIn this review, most of the works are attempted to cover about corrosion protection of metals with molecular-tight atomic thin carbon layers of all sorts of graphene derivatives from the very beginning to the latest theoretical and experimental research findings, so as engineering achievements in the field up to date. Although high and tuneable electrical conductivity of graphene is the main feature exploited in majority of the applications such as catalysis, photocatalysis, electrocatalysis, low electrical but high chemical resistivity electrodes in batteries, and ultracapacitors, corrosion protection of metals favours the opposite – good physical separation and electrical insulation. Both of the latter ones lead to durable excellent protection, which can only be ensured by special design and implementation. Thus, the milestones of major hardships both on theoretical and practical sides are delineated similarly as utmost developments in circumventing all problems with an aim to ensure timely transfer from the research phase to successful industry utilisations. Relying on numerous works, this paper gives a comprehensive overview in the subjects of preparation, modification, and use of multiple sorts of graphene in the forms of neat, combined layers, and composite coatings on numerous metals. All performance parameters are given in detail. Chronological order of the article serves the purpose to give the reader a clear picture and an important clue on viability of strategies in the aspects of environmental friendliness, attainable maximum durability, and performance of corrosion protection with graphene films, as well as further advancements in the field expected to occur in the near future.


2014 ◽  
Vol 900 ◽  
pp. 526-530
Author(s):  
Wei Shang ◽  
Zhou Lan Yin ◽  
Yu Qing Wen ◽  
Xu Feng Wang

The composite coatings were obtained on a magnesium alloy by micro-arc oxidation and sol-gel technique. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion behavior of MAO coating and composite coatings in a simulated seawater solution. The results show that corrosion behavior of the MAO coating and composite coatings are different at different immersion times. Corrosion protection of the MAO coating gradually weaken with the extension of soaking time, but corrosion protection of the composite coatings become stronger first and then weaken.


2015 ◽  
Vol 180 ◽  
pp. 479-493 ◽  
Author(s):  
Yoshiki Konno ◽  
Etsushi Tsuji ◽  
Yoshitaka Aoki ◽  
Toshiaki Ohtsuka ◽  
Hiroki Habazaki

Conducting polymers (CPs), including polypyrrole, have attracted attention for their potential in the protection of metals against corrosion; however, CP coatings have the limitation of poor adhesion to metal substrates. In this study, a composite coating, comprising a self-organized porous anodic oxide layer and a polypyrrole layer, has been developed on iron. Because of electropolymerization in the pores of the anodic oxide layer, the composite coating showed improved adhesion to the substrate along with prolonged corrosion protection in a NaCl aqueous corrosive environment. The anodic oxide layers are formed in a fluoride-containing organic electrolyte and contain a large amount of fluoride species. The removal of these fluoride species from the oxide layer and the metal/oxide interface region is crucial for improving the corrosion protection.


Sign in / Sign up

Export Citation Format

Share Document