Average Linear Time and Compressed Space Construction of the Burrows-Wheeler Transform

Author(s):  
Alberto Policriti ◽  
Nicola Gigante ◽  
Nicola Prezza
2020 ◽  
Author(s):  
Ahsan Sanaullah ◽  
Degui Zhi ◽  
Shaojie Zhang

AbstractDurbin’s PBWT, a scalable data structure for haplotype matching, has been successfully applied to identical by descent (IBD) segment identification and genotype imputation. Once the PBWT of a haplotype panel is constructed, it supports efficient retrieval of all shared long segments among all individuals (long matches) and efficient query between an external haplotype and the panel. However, the standard PBWT is an array-based static data structure and does not support dynamic updates of the panel. Here, we generalize the static PBWT to a dynamic data structure, d-PBWT, where the reverse prefix sorting at each position is represented by linked lists. We developed efficient algorithms for insertion and deletion of individual haplotypes. In addition, we verified that d-PBWT can support all algorithms of PBWT. In doing so, we systematically investigated variations of set maximal match and long match query algorithms: while they all have average case time complexity independent of database size, they have different worst case complexities, linear time complexity with the size of the genome, and dependency on additional data structures.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


Sign in / Sign up

Export Citation Format

Share Document