A Real Time Control Architecture for Continuously Managing Patients in a Care Unit

1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.

Author(s):  
John M. Hollerbach ◽  
Elaine Cohen ◽  
William Thompson ◽  
Rodney Freier ◽  
David Johnson ◽  
...  

Abstract A network-based real-time control architecture has been developed which integrates a haptic interface (the Sarcos Dextrous Arm Master) with an advanced CAD modeling system (Utah’s Alpha_1). New algorithms have been developed and tested for surface proximity testing, fast updates to local closest point on a surface, and smooth transitions between surfaces. The combination of these new algorithms with the haptic interface and CAD modeling system permits a user to actively touch and manipulate virtual parts as well as passively view them on a CRT screen.


2002 ◽  
Vol 7 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Kia Ng

This paper describes a trans-domain mapping (TDM) framework for translating meaningful activities from one creative domain onto another. The multi-disciplinary framework is designed to facilitate an intuitive and non-intrusive interactive multimedia performance interface that offers the users or performers real-time control of multimedia events using their physical movements. It is intended to be a highly dynamic real-time performance tool, sensing and tracking activities and changes, in order to provide interactive multimedia performances.From a straightforward definition of the TDM framework, this paper reports several implementations and multi-disciplinary collaborative projects using the proposed framework, including a motion and colour-sensitive system, a sensor-based system for triggering musical events, and a distributed multimedia server for audio mapping of a real-time face tracker, and discusses different aspects of mapping strategies in their context.Plausible future directions, developments and exploration with the proposed framework, including stage augmenta tion, virtual and augmented reality, which involve sensing and mapping of physical and non-physical changes onto multimedia control events, are discussed.


2009 ◽  
Vol 2 (3) ◽  
pp. 139-151 ◽  
Author(s):  
Byoung Wook Choi ◽  
Dong Gwan Shin ◽  
Jeong Ho Park ◽  
Soo Yeong Yi ◽  
Seet Gerald

Author(s):  
Thomas Nierhoff ◽  
Lei Lou ◽  
Vasiliki Koropouli ◽  
Martin Eggers ◽  
Timo Fritzsch ◽  
...  

2004 ◽  
Vol 16 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Tetsuya Taira ◽  
◽  
Nobuyuki Yamasaki

This paper explains the design and implementation of functionally distributed control architecture that realizes real-time control of autonomous mobile robots. To operate successfully in human society, autonomous mobile robots must achieve both local and global control in real-time. We focus on robots operating in parallel, such as moving while sensing, and propose a functionally distributed control architecture designed as a parallel/distributed computer consisting of many functionally distributed modules. Each module has an exclusive Processing Unit (PU) that processes one function of robot, such as image processing, auditory processing, and wheel control, independently in real-time. The robot can perform global action by cooperating with such modules. We then evaluate the efficiency of the proposed architecture by implementing prototype robots based on this architecture.


Sign in / Sign up

Export Citation Format

Share Document