Maximizing Social Influence in Real-World Networks—The State of the Art and Current Challenges

Author(s):  
Radosław Michalski ◽  
Przemysław Kazienko
Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 407 ◽  
Author(s):  
Dominik Weikert ◽  
Sebastian Mai ◽  
Sanaz Mostaghim

In this article, we present a new algorithm called Particle Swarm Contour Search (PSCS)—a Particle Swarm Optimisation inspired algorithm to find object contours in 2D environments. Currently, most contour-finding algorithms are based on image processing and require a complete overview of the search space in which the contour is to be found. However, for real-world applications this would require a complete knowledge about the search space, which may not be always feasible or possible. The proposed algorithm removes this requirement and is only based on the local information of the particles to accurately identify a contour. Particles search for the contour of an object and then traverse alongside using their known information about positions in- and out-side of the object. Our experiments show that the proposed PSCS algorithm can deliver comparable results as the state-of-the-art.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


Author(s):  
Andrés Camero ◽  
Jamal Toutouh ◽  
Javier Ferrer ◽  
Enrique Alba

The unsustainable development of countries has created a problem due to the unstoppable waste generation. Moreover, waste collection is carried out following a pre-defined route that does not take into account the actual level of the containers collected. Therefore, optimizing the way the waste is collected presents an interesting opportunity. In this study, we tackle the problem of predicting the waste generation ratio in real-world conditions, i.e., under uncertainty. Particularly, we use a deep neuroevolutionary technique to automatically design a recurrent network that captures the filling level of all waste containers in a city at once, and we study the suitability of our proposal when faced to noisy and faulty data. We validate our proposal using a real-world case study, consisting of more than two hundred waste containers located in a city in Spain, and we compare our results to the state-of-the-art. The results show that our approach exceeds all its competitors and that its accuracy in a real-world scenario, i.e., under uncertain data, is good enough for optimizing the waste collection planning.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


2014 ◽  
Vol 17 (06) ◽  
pp. 1450018 ◽  
Author(s):  
XIN LIU ◽  
WEICHU LIU ◽  
TSUYOSHI MURATA ◽  
KEN WAKITA

There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.


2019 ◽  
Vol 16 (3) ◽  
pp. 59-77
Author(s):  
Yi Zhao ◽  
Yu Qiao ◽  
Keqing He

Clustering has become an increasingly important task in the analysis of large documents. Clustering aims to organize these documents, and facilitate better search and knowledge extraction. Most existing clustering methods that use user-generated tags only consider their positive influence for improving automatic clustering performance. The authors argue that not all user-generated tags can provide useful information for clustering. In this article, the authors propose a new solution for clustering, named HRT-LDA (High Representation Tags Latent Dirichlet Allocation), which considers the effects of different tags on clustering performance. For this, the authors perform a tag filtering strategy and a tag appending strategy based on transfer learning, Word2vec, TF-IDF and semantic computing. Extensive experiments on real-world datasets demonstrate that HRT-LDA outperforms the state-of-the-art tagging augmented LDA methods for clustering.


2009 ◽  
Vol 8 (4) ◽  
pp. 254-262 ◽  
Author(s):  
William Ribarsky ◽  
Brian Fisher ◽  
William M. Pottenger

There has been progress in the science of analytical reasoning and in meeting the recommendations for future research that were laid out when the field of visual analytics was established. Researchers have also developed a group of visual analytics tools and methods that embody visual analytics principles and attack important and challenging real-world problems. However, these efforts are only the beginning and much study remains to be done. This article examines the state of the art in visual analytics methods and reasoning and gives examples of current tools and capabilities. It shows that the science of visual analytics needs interdisciplinary efforts, indicates some of the disciplines that should be involved and presents an approach to how they might work together. Finally, the article describes some gaps, opportunities and future directions in developing new theories and models that can be enacted in methods and design principles and applied to significant and complex practical problems and data.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 771
Author(s):  
Qiang Wei ◽  
Guangmin Hu

Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional network that infers missing edges by leveraging node labels, features, and distances. Specifically, we first construct an estimated network topology for the unobserved part using node labels, then jointly refine the network topology and learn the edge likelihood with node labels, node features and distances. Extensive experiments using several real-world datasets show the superiority of our method compared with the state-of-the-art approaches.


2016 ◽  
Author(s):  
David S. Reed

Practitioners who present at public administration academic conferences can build professional relationships, sharpen their thinking, get referrals to people, research and techniques, strengthening their resumes, and advance the state of the art. Practitioners can present real-world experience with cases they handle and techniques they apply -- this paper gives examples and identifies common pitfalls. Tips on presenting include how to reach out before your presentation to encourage attendance. This paper appeared first on Center for Public Administrators www.PubAdmin.org


Author(s):  
Masoud Hamedani ◽  
Sang-Wook Kim

In this paper, we propose SimAndro-Plus as an improved variant of the state-of-the-art method, SimAndro, to compute the similarity of Android applications (apps) regarding their functionalities. SimAndro-Plus has two major differences with SimAndro: 1) it exploits two beneficial features to similarity computation, which are totally disregarded by SimAndro; 2) to compute the similarity score of an app-pair based on strings and package name features, SimAndro-Plus considers not only those terms co-appearing in both apps but also considers those terms appearing in one app while missing in the other one. The results of our extensive ex periments with three real-world datasets and a dataset constructed by human experts demonstrate that 1) each of the two aforementioned differences is really effective to achieve better accuracy and 2) SimAndro-Plus outperforms SimAndro in similarity computation by 14% in average.


Sign in / Sign up

Export Citation Format

Share Document