The Proper Utilization of Passive Solar Energy in Residential Buildings, Northern Cyprus

Author(s):  
Seyedeh Ayeh Mirrezaei ◽  
Harun Sevinç ◽  
Ahadollah Azami
2015 ◽  
Vol 19 (4) ◽  
pp. 1415-1418
Author(s):  
Jing Ma ◽  
Jian Liu ◽  
Yin Liu ◽  
Wen-Lei Wan

This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.


1986 ◽  
pp. 171-206
Author(s):  
Harry T. Gordon ◽  
P. Richard Rittelmann ◽  
Justin Estoque ◽  
G. Kimball Hart ◽  
Min Kantrowitz

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4018
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

It is common practice, in the production of photovoltaic energy to only use the south-exposed roof surface of a building, in order to achieve the maximum production of solar energy while lowering the costs of the energy and the solar technologies. However, using the south-exposed surface of a roof only allows a small quota of the energy demand to be covered. Roof surfaces oriented in other directions could also be used to better cover the energy load profile. The aim of this work is to investigate the benefits, in terms of costs, self-sufficiency and self-consumption, of roof integrated photovoltaic technologies on residential buildings with different orientations. A cost-optimal analysis has been carried out taking into account the economic incentives for a collective self-consumer configuration. It has emerged, from this analysis, that the better the orientation is, the higher the energy security and the lower the energy costs and those for the installation of photovoltaic technologies. In general, the use of south-facing and north-facing roof surfaces for solar energy production has both economic and energy benefits. The self-sufficiency index can on average be increased by 8.5% through the use of photovoltaic installations in two directions on gable roofs, and the maximum level that can be achieved was on average 41.8, 41.5 and 35.7% for small, medium and large condominiums, respectively. Therefore, it could be convenient to exploit all the potential orientations of photovoltaic panels in cities to improve energy security and to provide significant economic benefits for the residential users.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


2012 ◽  
Vol 37 (4) ◽  
pp. 19-28
Author(s):  
Rob Marsh

Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out of housing schemes where climate mitigation was sought through reduced space heating demand, and it is shown that extensive problems with overheating exist. A theoretical study of regulative and design strategies for climate mitigation in new build housing has therefore been carried out, and it is shown that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling demand in housing. An analysis of new build housing using passive solar energy as a climate mitigation strategy has therefore been carried out in relation to future climate change scenarios. It is shown that severe indoor comfort problems can occur, questioning the relevance of passive solar energy as a climate mitigation strategy. In conclusion, a theoretical study of the interplay between climate adaptation and mitigation strategies is carried out, with a cross-disciplinary focus on users, passive design and active technologies. It is shown that the cumulative use of these strategies can create an adaptation buffer, thus eliminating problems with overheating and reducing energy consumption. New build housing should therefore be designed in relation to both current and future climate scenarios to show that the climate mitigation strategies ensure climate adaptation.


2012 ◽  
Vol 16 (1) ◽  
pp. 206-220
Author(s):  
Mostafa Abd elhafeez ◽  
Dina Noaaman ◽  
Ashraf EL-Mokadem

Sign in / Sign up

Export Citation Format

Share Document