Entomopathogenic Nematodes in Italy: Occurrence and Use in Microbial Control Strategies

Author(s):  
Francesca De Luca ◽  
Mirella Clausi ◽  
Alberto Troccoli ◽  
Giovanna Curto ◽  
Giancarlo Rappazzo ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Víctor M. Hernández-Velázquez ◽  
Laura P. Lina-García ◽  
Verónica Obregón-Barboza ◽  
Adriana G. Trejo-Loyo ◽  
Guadalupe Peña-Chora

The objective of this paper was to analyze information related to entomopathogenic-associatedDiatraeaspp. Gaining a better understanding of the effects of these microorganisms will help in the development of successful microbial control strategies against stem borers that attack sugarcane plants.


Author(s):  
Nabil El-Wakeil ◽  
Nawal Gaafar ◽  
Abdellah Abdel-Moniem ◽  
Christa Volkmar

Chamomile Matricaria recutita (L) is an ancient healing plant; it is used for a sore stomach, a mild laxative, anti-inflammatory and a gentle sleep aid. Chamomile plants are infected by many insect pests. The flower heads are infested by chamomile smooth beetle Olibrus aeneus (Fabricius 1792). The dangerous insect is infestation with chamomile stem-weevil Microplontus rugulosus (Autumn 1795). Their infestations lead to a high reduction in chamomile yield. This work aimed to determine the adequate management strategies of Microplontus rugulosus and Olibrus aeneus, especially using entomopathogenic nematodes. Management of chamomile insects was conducted on plants moved from field to greenhouse using entomopathogenic nematodes; while the control plants were sprayed only with water. The efficiency of three types of entomopathogenic nematodes (EPNs) was evaluated; each strain replicated 3 times; each was 50 chamomile plants (totally is 150 for each strain). Three treatment dates were carried out in May, June and July; the first one was mainly for controlling stem weevil, while the other two dates were for smooth beetle. Steinernema carpocapsae had more efficiency than S. feltiae and Heterorhabditis bacteriophora. The lived larvae were higher in the untreated than treated plants. EPNS could be one of the most effective management strategies to control such insects to keep the environment clean and should be one of the suitable control strategies for integrated insect management practices which would be developed with the ecological requirements of insects in different chamomile fields.


2019 ◽  
Vol 65 (4) ◽  
pp. 261-281 ◽  
Author(s):  
G. Douglas Inglis ◽  
Grant M. Duke ◽  
Mark S. Goettel ◽  
J. Todd Kabaluk ◽  
Rodrigo Ortega-Polo

The biogeography and genotype diversity of Metarhizium species in northwestern North American soils was examined; 20 ecoregions were sampled, including 58 agricultural and 80 natural habitat subsites, and areas that were glaciated during the Pleistocene epoch. One hundred and twenty-nine isolates of M. brunneum, 26 isolates of M. robertsii, four isolates of M. guizhouense, one isolate of M. flavoviride, and 55 isolates of Beauveria were recovered. Metarhizium and Beauveria species were isolated in diverse ecoregions within the study area, but a trend for increased isolation of Metarhizium species in western regions of the study area was observed. Consistent with this observation, the prevalence of M. brunneum and M. robertsii decreased at higher elevations, and the opposite was true for Beauveria. Both M. brunneum and M. robertsii were more commonly isolated from agricultural and natural habitat subsites, and considerable genotypic diversity was observed in both habitats and within the same subsite. Metarhizium robertsii, but not M. brunneum, was more commonly isolated from nonglaciated locations; however, less diversity and richness was observed for M. brunneum recovered from glaciated versus nonglaciated locations consistent with insular biogeography. The study has implications for microbial control strategies in the region.


Author(s):  
Cecilia Vera ◽  
Fiorella Tulli ◽  
Claudio D. Borsarelli

Microbial infections represent a silent threat to health that has worsened in recent decades due to microbial resistance to multiple drugs, preventing the fight against infectious diseases. Therefore, the current postantibiotic era forces the search for new microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT) using supramolecular arrays with photosensitizing capabilities showed successful emerging applications. This exciting field makes it possible to combine applied aspects of molecular photochemistry and supramolecular chemistry, together with the development of nano- and biomaterials for the design of multifunctional or “smart” supramolecular photosensitizers (SPS). This minireview aims to collect the concepts of the photosensitization process and supramolecular chemistry applied to the development of efficient applications of aPDT, with a brief discussion of the most recent literature in the field.


2000 ◽  
Vol 64 (4) ◽  
pp. 655-671 ◽  
Author(s):  
Laurent Verschuere ◽  
Geert Rombaut ◽  
Patrick Sorgeloos ◽  
Willy Verstraete

SUMMARY There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed.


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 27 ◽  
Author(s):  
Geoffrey Jaffuel ◽  
Ilham Sbaiti ◽  
Ted C. J. Turlings

To face the environmental problems caused by chemical pesticides, more ecologically friendly alternative pest control strategies are needed. Entomopathogenic nematodes (EPN) have great potential to control soil-dwelling insects that cause critical damage to the roots of cultivated plants. EPN are normally suspended in water and then sprayed on plants or onto the soil, but the inconsistent efficiency of this application method has led to the development of new formulations. Among them is the use of alginate capsules or beads that encapsulate the EPN in favorable conditions for later application. In this study, we evaluated whether alginate beads containing EPN are able to kill larvae of the banded cumber beetle Diabrotica balteata LeConte and thereby protect maize plants from damage by these generalist rootworms. EPN formulated in beads were as effective as sprayed EPN at killing D. balteata. They were found to protect maize plants from D. balteata damage, but only if applied in time. The treatment failed when rootworm attack started a week before the EPN beads were applied. Hence, the well-timed application of EPN-containing alginate beads may be an effective way to control root herbivores.


2010 ◽  
Vol 18 (02) ◽  
pp. 455-478 ◽  
Author(s):  
SWETA PATHAK ◽  
ALAKES MAITI

The traditional method for controlling pests is the application of chemical pesticides. Growing concern on the negative effects of chemicals has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of pests. A mathematical model for microbial control of pests is formulated in this paper. The dynamical characteristics of the system are studied. The role of time-delay has been discussed. Numerical simulations are carried out to illustrate the analytical findings. Biological implications have been discussed.


2017 ◽  
Author(s):  
Kelly N. Clark ◽  
Nicole B. Dorio ◽  
Michelle K. Demaray ◽  
Christine K. Malecki

Sign in / Sign up

Export Citation Format

Share Document