Introduction to Physics at the High-Energy Frontier

Author(s):  
Hannsjörg Artur Weber
Keyword(s):  
Author(s):  
A. I. Sytov ◽  
V. V. Tikhomirov ◽  
A. S. Lobko
Keyword(s):  

Author(s):  
Kazuhisa Nakajima ◽  
Aihua Deng ◽  
Xiaomei Zhang ◽  
Baifei Shen ◽  
Jiansheng Liu ◽  
...  

Author(s):  
Peter Jenni

For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.


Science ◽  
2009 ◽  
Vol 326 (5958) ◽  
pp. 1342-1343 ◽  
Author(s):  
A. Cho
Keyword(s):  

2019 ◽  
Vol 64 (7) ◽  
pp. 646
Author(s):  
I. Valiño

We highlight the main results obtained by the Pierre Auger Collaboration in its quest to unveil the mysteries associated with the nature and origin of the ultra-high energy cosmic rays, the highest-energy particles in the Universe. The observatory has steadily produced high-quality data for more than 15 years, which have already led to a number of major breakthroughs in the field contributing to the advance of our understanding of these extremely energetic particles. The interpretation of our measurements so far opens new questions which will be addressed by the on-going upgrade of the Pierre Auger Observatory.


Author(s):  
Le Nhu Thuc ◽  
Dao Thi Le Thuy

Scalar unparticle production in the process is studied from unparticle physics perspective. We have calculated and evaluated the cross sections for muon and Z boson exchange when the  beams are initially polarized. Numerical calculations show that the cross section of collisions depends strongly on the polarized condition of the initial beams and the collision energy . The results are plotted in the energy reach available at the present accelerators and the future high energy frontier muon colliders as shown in the scheme by Muon Accelerator Program (MAP) and other different colliders.


Sign in / Sign up

Export Citation Format

Share Document