scholarly journals Early physics results

Author(s):  
Peter Jenni

For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Xi-Yan Tian ◽  
Liu-Feng Du ◽  
Yao-Bei Liu

AbstractThe vectorlike top partners are potential signature of some new physics beyond the Standard Model at the TeV scale. In this paper, we propose to search for the vectorlike T quark with charge 2/3 in the framework of a simplified model where the top partners only couples with the third generation of Standard Model quarks. We investigate the observability for electroweak production of a vectorlike T quark in association with a standard model bottom quark through the process $$pp \rightarrow T\bar{b}j$$ p p → T b ¯ j with the subsequent decay mode of $$T\rightarrow t(\rightarrow b W^+\rightarrow b \ell ^{+} \nu _{\ell })h( \rightarrow \gamma \gamma )$$ T → t ( → b W + → b ℓ + ν ℓ ) h ( → γ γ ) , at the proposed High Energy Large Hadron Collider (HE-LHC) and Future Circular Collider in hadron-hadron mode (FCC-hh) including the realistic detector effects. The 95% confidence level excluded regions and the $$5\sigma $$ 5 σ discovery reach in the parameter plane of $$\kappa _{T}-m_T$$ κ T - m T , are respectively obtained at the HE-LHC with the integrated luminosity of 15 ab$$^{-1}$$ - 1 and the FCC-hh with the integrated luminosity of 30 ab$$^{-1}$$ - 1 . We also analyze the projected sensitivity in terms of the production cross section times branching fraction at the HE-LHC and FCC-hh.


Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

The LHC (Large Hadron Collider) will serve as the energy frontier for high-energy physics for the next 20 years. The highlight of the LHC running so far has been the discovery of the Higgs boson, but the LHC programme has also consisted of the measurement of a myriad of other Standard Model processes, as well as searches for Beyond-the-Standard-Model physics, and the discrimination between possible new physics signatures and their Standard Model backgrounds. Essentially all of the physics processes at the LHC depend on quantum chromodynamics, or QCD, in the production, or in the decay stages, or in both. This book has been written as an advanced primer for physics at the LHC, providing a pedagogical guide for the calculation of QCD and Standard Model predictions, using state-of-the-art theoretical frameworks. The predictions are compared to both the legacy data from the Tevatron, as well as the data obtained thus far from the LHC, with intuitive connections between data and theory supplied where possible. The book is written at a level suitable for advanced graduate students, and thus could be used in a graduate course, but is also intended for every physicist interested in physics at the LHC.


2008 ◽  
Vol 23 (32) ◽  
pp. 5117-5136 ◽  
Author(s):  
MONICA PEPE ALTARELLI ◽  
FREDERIC TEUBERT

LHCb is a dedicated detector for b physics at the LHC (Large Hadron Collider). In this paper we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.


Author(s):  
Ivan A. Shershan ◽  
Tatiana V. Shishkina

In this paper the analysis of W-boson production process in high-energy electron-photon collisions as a tool to search for deviations from the Standard Model is considered. In particular, a set of extended gauge models, including anomalous multi-boson interactions, are discussed as a promising way for «new physics» study. A numerical analysis of the total cross sections of the processes was carried out. The lowest order radiative corrections in the soft-photon approximation within the Standard Model are taken into account. Calculations beyond the Standard Model was performed, the kinematic features of the cross sections were identified. The restrictions on the anomalous triple gauge boson coupling constants were analyzed and the kinematic areas to the search for their manifestations were obtained during the experiments at the International Linear Collider. The paper shows that the search for «new physics» effects based on electron-photon collisions around the W-boson production peak is the maximal promising. It was also shown that future experiments at high luminosity linear colliders will significantly clarify the constraints on anomalous gauge coupling constants.


Author(s):  
Roberto Franceschini

We discuss the physics opportunities and challenges presented by high energy lepton colliders in the range of center-of-mass energy between few and several tens of TeV. The focus is on the progress attainable on the study of weak and Higgs interactions in connection with new physics scenarios motivated by the shortcomings of the Standard Model.


2019 ◽  
Vol 34 (38) ◽  
pp. 2050065
Author(s):  
Gabriel Facini ◽  
Kyrylo Merkotan ◽  
Matthias Schott ◽  
Alexander Sydorenko

Fiducial production cross-section measurements of Standard Model processes, in principle, provide constraints on new physics scenarios via a comparison of the predicted Standard Model cross-section and the observed cross-section. This approach received significant attention in recent years, both from direct constraints on specific models and the interpretation of measurements in the view of effective field theories. A generic problem in the reinterpretation of Standard Model measurements is the corrections application of to data to account for detector effects. These corrections inherently assume the Standard Model to be valid, thus implying a model bias of the final result. In this work, we study the size of this bias by studying several new physics models and fiducial phase–space regions. The studies are based on fast detector simulations of a generic multi-purpose detector at the Large Hadron Collider. We conclude that the model bias in the associated reinterpretations is negligible only in specific cases, however, typically on the same level as systematic uncertainties of the available measurements.


2005 ◽  
Vol 20 (22) ◽  
pp. 5164-5173 ◽  
Author(s):  
BEATE HEINEMANN

Recent searches for physics beyond the Standard Model at high energy colliders are presented. The main focus is on searches for supersymmetry, extra dimensions and new gauge bosons. In all search analyses the data are found to agree well with the Standard Model background expectation and no evidence for contributions from physics beyond the Standard Model is found. The data are thus used to place limits on new physics scenarios.


2005 ◽  
Vol 20 (22) ◽  
pp. 5234-5243
Author(s):  
W. J. STIRLING

Quantum Chromodynamics is an established part of the Standard Model and an essential part of the toolkit for searching for new physics at high-energy colliders. I present a status report on the theory of QCD and review some of the important developments in the past year.


2009 ◽  
Vol 24 (01) ◽  
pp. 1-15 ◽  
Author(s):  
GUSTAAF BROOIJMANS

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. Here, the experiments' capability to observe new resonances in various channels is reviewed.


Sign in / Sign up

Export Citation Format

Share Document