An Adaptive Brain Storm Optimization Algorithm for Multiobjective Optimization Problems

Author(s):  
Xiaoping Guo ◽  
Yali Wu ◽  
Lixia Xie ◽  
Shi Cheng ◽  
Jing Xin
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ding Han ◽  
Jianrong Zheng

Most of the multiobjective optimization problems in engineering involve the evaluation of expensive objectives and constraint functions, for which an approximate model-based multiobjective optimization algorithm is usually employed, but requires a large amount of function evaluation. Aiming at effectively reducing the computation cost, a novel infilling point criterion EIR2 is proposed, whose basic idea is mapping a point in objective space into a set in expectation improvement space and utilizing the R2 indicator of the set to quantify the fitness of the point being selected as an infilling point. This criterion has an analytic form regardless of the number of objectives and demands lower calculation resources. Combining the Kriging model, optimal Latin hypercube sampling, and particle swarm optimization, an algorithm, EIR2-MOEA, is developed for solving expensive multiobjective optimization problems and applied to three sets of standard test functions of varying difficulty and comparing with two other competitive infill point criteria. Results show that EIR2 has higher resource utilization efficiency, and the resulting nondominated solution set possesses good convergence and diversity. By coupling with the average probability of feasibility, the EIR2 criterion is capable of dealing with expensive constrained multiobjective optimization problems and its efficiency is successfully validated in the optimal design of energy storage flywheel.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyan Tan ◽  
Xue Lu ◽  
Yan Liu ◽  
Qiang Wang ◽  
Huaxiang Zhang

In order to solve the multiobjective optimization problems efficiently, this paper presents a hybrid multiobjective optimization algorithm which originates from invasive weed optimization (IWO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), a popular framework for multiobjective optimization. IWO is a simple but powerful numerical stochastic optimization method inspired from colonizing weeds; it is very robust and well adapted to changes in the environment. Based on the smart and distinct features of IWO and MOEA/D, we introduce multiobjective invasive weed optimization algorithm based on decomposition, abbreviated as MOEA/D-IWO, and try to combine their excellent features in this hybrid algorithm. The efficiency of the algorithm both in convergence speed and optimality of results are compared with MOEA/D and some other popular multiobjective optimization algorithms through a big set of experiments on benchmark functions. Experimental results show the competitive performance of MOEA/D-IWO in solving these complicated multiobjective optimization problems.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


Sign in / Sign up

Export Citation Format

Share Document