Synsedimentary Tectonics and Mass Wasting Along the Alpine Margin in Liassic Time

Author(s):  
Rüdiger Henrich
2016 ◽  
Author(s):  
Pål Ringkjøb Nielsen ◽  
◽  
Svein Olaf Dahl ◽  
Henrik Løseth Jansen ◽  
Eivind W.N. Støren

1997 ◽  
Vol 58 (8) ◽  
pp. 597-616 ◽  
Author(s):  
Todd K. Presley ◽  
John M. Sinton ◽  
Malcolm Pringle
Keyword(s):  

2017 ◽  
Vol 14 ◽  
pp. 36-41 ◽  
Author(s):  
Filippo Giorgio Di Girolamo ◽  
Francesco Agostini ◽  
Sara Mazzucco ◽  
Roberta Situlin ◽  
Filippo Mearelli ◽  
...  

2017 ◽  
Vol 87 (5) ◽  
pp. 500-516 ◽  
Author(s):  
Yongpeng Qin ◽  
Tiago M. Alves ◽  
José Constantine ◽  
Davide Gamboa

2021 ◽  
Author(s):  
OLUFEYISAYO B ILESANMI ◽  
J David Rogers ◽  
Francisca E Oboh-Ikuenobe

Abstract The New Madrid Seismic Zone (NMSZ) has historically recorded some of the largest intensity earthquakes in North America, including significant earth movements that resulted in about 2,000 felt earthquakes during 1811-1812. The region continues to experience mass wasting due to earth movements. The aim of this study is to understand the influence of geologic variables on mass wasting processes in the greater Cape Girardeau area; which forms the commercial center of Missouri's fertile "Bootheel" region. Earth movement susceptibility was evaluated in Cape Girardeau and Bollinger counties and portions of Stoddard and Scott counties by mapping potential landslide features on topographic maps, field verification of such features, and geospatial analysis of recent LiDAR imagery. In order to evaluate the changes in surface morphology, slope inclination, hillshade aspect, hydrology, lithology, faults, precipitation, seismicity, sinkholes, and geohydrology were considered. Geographically weighted analysis of the geomorphologic variables identified zones of relative risk. In addition, data were evaluated for oil and gas pipelines, bridges, utilities, and open pit mines associated with mass wasting on public and economic infrastructure. The results suggest that anthropogenic changes commonly associated with urban development impact land use, runoff, infiltration, and slope failures, while sustained precipitation and seismic ground shaking tend to trigger landslides. The scale of mass wasting in the study area was robust, varying from as small as one-half hectare to as much as 67 km2. The vulnerability of the population in susceptible areas tends to increase at the lower elevations and on alluvial flood plains. Thus, hazard susceptibility evaluation can be useful in both community planning as well as emergency preparedness.


2021 ◽  
Author(s):  
Ian Giesbrecht ◽  
Suzanne Tank ◽  
Justin Del Bel Belluz ◽  
Jennifer Jackson

<p>Rainforest rivers export large quantities of terrestrial materials from watersheds to the coastal ocean, with important implications for local ecosystems and global biogeochemical cycles. However, the impact of episodic disturbance on this process is a critical knowledge gap in our understanding of land-sea connections. Fjords represent a global hotspot for terrestrial carbon burial in marine sediments, yet the relative importance of typical riverine fluxes vs. mass wasting fluxes is uncertain and dynamic. Similarly, mass wasting events can generate both an instantaneous pulse and a sustained shift in the material export regime. Riverine sediment regimes also have important implications for freshwater ecosystems and fisheries resources. A recent mass wasting event in Bute Inlet – Homalco First Nation traditional territory and British Columbia, Canada – presents an important opportunity to quantify the sustained impact of such an infrequent large disturbance on the source-to-sink linkages between glacierized mountains, rivers, and fjords.</p><p>On November 28, 2020, a landslide in the headwaters of the Elliot Creek watershed (118 km<sup>2</sup>) triggered a glacial lake outburst flood (GLOF) that eroded 3 km<sup>2</sup> of forested land and exported large volumes of water and terrestrial materials to the lower reaches of the Southgate River watershed (1986 km<sup>2</sup>) and ultimately to the head of Bute Inlet. Here we assess river and ocean surface turbidity over four winter months following the event, in comparison to pre-event measurements taken across all seasons in recent years. River turbidity was measured on the Southgate River above and below the confluence of Elliot Creek, beginning in December 2020, and at the mouth of the Southgate and nearby Homathko Rivers prior to November 2020. Bute Inlet turbidity was measured (every month to two months) starting in May 2017.</p><p>Prior to the GLOF event, Southgate River turbidity ranged from a low of 3.3 ± 0.4 FNU in the winter to a high of 71.4 FNU in the summer meltwater period. Since the event, Southgate River turbidity has been consistently elevated ≥6 times background levels recorded above Elliot Creek. At the extreme, on January 13, 2021, seven weeks after the GLOF, Southgate River mean turbidity (105.2 ± 3.3 FNU) was 32 times the background (3.3 ± 0.4 FNU), equating to a sustained increase in wintertime turbidity that sometimes exceeds the historical summertime peak. Given the typical coupling of turbidity with discharge, we expect further increases in turbidity with the coming freshet of 2021; the first meltwater season following the GLOF. These results suggest the potential for a sustained shift in the seasonal turbidity regime of the Southgate River and the estuarine waters of Bute Inlet. The elevated turbidity signals broader changes to: sediment export and carbon burial, the depth and seasonality of light penetration, river water quality, and spawning habitat quality for anadromous fish. Ongoing monitoring will be used to characterize the duration, dynamics, and potential recovery of elevated turbidity regimes across the land-to-ocean aquatic continuum in Bute Inlet.</p>


2021 ◽  
Author(s):  
Anand Kumar Pandey ◽  
Kotluri Sravan Kumar ◽  
Virendra Mani Tiwari ◽  
Puranchand Rao ◽  
Kirsten Cook ◽  
...  

<p>The slope instability and associated mass wasting are among the most efficient surface gradation processes in the bedrock terrain that produce dramatic landscape change and associated hazards. The wedge failure in periglacial Higher Himalaya terrain on 7th February in Chamoli, Uttarakhand (India) produced >1.5 km high rock avalanche, which amalgamated with the glacial debris on the frozen river bed produced massive debris flow along the high gradient Rishi Ganga catchment. The high-velocity debris flow and a surge of high flood led to extensive loss of life and infrastructures and issuing the extreme event flood warning along the Alakananda-Ganga river, despite there was no immediate extreme climatic event. The affected region is the locus of extreme mass wasting events associated with Glacial Lake Outburst Flood (GLOF) and Landslide Lake Outburst Flood (LLOF) in the recent past. We analyzed the landscape to understand its control on the 7th February 2021 Rishi Ganga event and briefly discuss other significant events in the adjoining region e.g. 1893/1970 Gohna Tal/Lake LLOF and 2013-Uttarakhand events in Chamoli, which have significance in understanding the surface processes in Higher Himalayan terrain.</p>


Sign in / Sign up

Export Citation Format

Share Document