Surface Runoff Generation, Vertical Infiltration and Subsurface Lateral Flow

Author(s):  
Vyacheslav G. Rumynin
2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 597-606
Author(s):  
CHINMAYA PANDA ◽  
DWARIKA MOHAN DAS ◽  
B. C. SAHOO ◽  
B. PANIGRAHI ◽  
K. K. SINGH

In this present study, Soil and Water Assessment Tool (SWAT) embedded with ArcGIS interface has been used to simulate the surface runoff from the un-gauged sub-catchments in the upper catchment of Subarnarekha basin. Model calibration and validation were performed with the help of Sequential Uncertainty Fitting (SUFI-2) in-built in the SWAT-CUP package (SWAT Calibration Uncertainty Programs). The model was calibrated for a period from 1996 to 2008 with 3 years warm up period (1996-1998) and validated for a period of 5 years from 2009 to 2013. The model evaluation was performed by Nash - Sutcliffe coefficient (NSE), Coefficient of determination (R2) and Percentage Bias (PBIAS). The degree of uncertainty was evaluated by P and R factors. Basing upon the R2, NSE and PBIAS values respectively, of the order of 0.90, 0.90 and -12%, during calibration and 0.85, 0.83 and -15% during validation, substantiate performance of the model. All uncertainties of model parameters have been well taken by the P and R factors respectively, of the order of 0.95 and 0.77 during calibration and 0.82 and 0.87 during validation. The runoff generation from 19 sub-catchments of Adityapur catchment varies from 29.2-44.1% of the annual rainfall and average surface runoff simulated for the entire catchment is 545 mm. As the surface runoff generated in most of the sub-catchments amounts to above 30% of rainfall, it is recommended for adequate number of structural interventions at appropriate locations in the catchment to store the rainfall excess for providing irrigation, recharging groundwater and restricting the sediment and nutrient loss.


2004 ◽  
Vol 44 (3) ◽  
pp. 283 ◽  
Author(s):  
S. R. Murphy ◽  
G. M. Lodge ◽  
S. Harden

Surface runoff can represent a significant part of the hydrological balance of grazed pastures on the north-west slopes of New South Wales, and is influenced by a range of rainfall characteristic, soil property, and pasture conditions. Runoff plots were established on grazed pastures at 3 sites as part of the Sustainable Grazing Systems National Experiment (SGS NE). Pastures were either native (redgrass, wallaby grass and wire grass) or sown species (phalaris, subterranean clover and lucerne) and a range of grazing management treatments were imposed to manipulate pasture herbage mass, litter mass and ground cover. Rainfall and runoff events were recorded using automatic data loggers between January 1998 and September 2001. Stored soil water in the surface layer (0–22.5 cm) was monitored continuously using electrical resistance sensors and automatic loggers. Pasture herbage mass, litter mass and ground cover were estimated regularly to provide information useful in interpreting runoff generation processes.Total runoff ranged from 6.6 mm at Manilla (0.3% of rainfall) to 185 mm at Nundle (5.7% of rainfall) for different grazing treatments, with the largest runoff event being recorded at Nundle (46.7 mm). Combined site linear regression analyses showed that soil depth, rainfall depth and rainfall duration explained up to 30.3% of the variation in runoff depth. For individual sites, these same variables were also important, accounting for 13.3–33.6% of the variation in runoff depth. Continuous monitoring of stored soil water in relation to these runoff events indicated that the majority of these events were generated by saturation excess, with major events in winter contributing substantially to regional flooding. Long-term simulation modelling (1957–2001) using the SGS Pasture Model indicated that most runoff events were generated in summer, which concurred with the number of flood events recorded at Gunnedah, NSW, downstream of the SGS sites. However, floods also occurred frequently in winter, but the simulations generated few runoff events at that time of the year. These results have important implications for sustainability of grazed pastures and long-term simulation modelling of the hydrological balance of such systems, since runoff generation processes are likely to vary both spatially and temporally for different rainfall events.


1997 ◽  
Vol 11 (3) ◽  
pp. 618-622 ◽  
Author(s):  
Wondi Mersie ◽  
Cathy A. Seybold

This paper describes the design, construction, and operation of tilted beds to investigate the effectiveness of vegetative filter strips (VFS) in removing agricultural chemicals from runoff water. The beds are designed to catch surface runoff, leachate, and subsurface lateral flow. Switchgrass was established on beds filled with Cullen clay loam or Emporia sandy loam. Switchgrass establi shed on Cullen clay loam beds reduced surface runoff by 60% and by 11% in sandy loam containing switchgrass compared to respective bare soils. Infiltration was 64, 26, 17, and 8% for clay loam with switchgrass, clay loam without switchgrass, sandy loam with switchgrass, and sandy loam without switchgrass, respectively.


2019 ◽  
Vol 164 ◽  
pp. 276-292
Author(s):  
Abdul Razaq Rezaei ◽  
Zubaidah Binti Ismail ◽  
Mohammad Hossein Niksokhan ◽  
Abu Hanipah Ramli ◽  
Lariyah Mohd Sidek ◽  
...  

2020 ◽  
Author(s):  
Mohamed I. Ahmed ◽  
Amin Elshorbagy ◽  
Alain Pietroniro

<p>The hydrography of the prairie basins is complicated by the existence of numerous land depressions, known as prairie potholes, which can retain a substantial amount of surface runoff. Consequently, the runoff production in the prairies follows a fill, spill, and merging mechanism, which results in a dynamic contributing area that makes the streamflow simulation challenging. Existing approaches to represent the potholes’ dynamics, in different hydrological models, use either a lumped or a series of reservoirs that contribute flow after exceeding a certain storage threshold. These approaches are simplified and do not represent the actual dynamics of the potholes nor their spatial water extents. Consequently, these approaches may not be useful in capturing the potholes’ complexities and may not be able to accurately simulate the complex prairie streamflow. This study advances towards more accurate and physically-based streamflow simulation in the prairies by implanting a physically-based runoff generation algorithm (Prairie Region Inundation MApping, PRIMA model) within the MESH land surface model, and is referred to as MESH-PRIMA. PRIMA is a recently developed hydrological routing model that can simulate the lateral movement of water over prairie landscape using topographic data provided via DEMs. In MESH-PRIMA, MESH handles the vertical water balance calculations, whereas PRIMA routes the water and determines the amount of water storage and surface runoff. The streamflow simulations of MESH-PRIMA (using different DEM resolution as a topographic input) and MESH with its existing conceptual pothole dynamics algorithm are tested on a number of pothole-dominated watersheds within Saskatchewan, Canada, and compared against observed flows. MESH-PRIMA provides improved streamflow and peak flow simulation, compared to that of MESH with its conceptual pothole algorithm, based on the metrics evaluated for the simulations. MESH-PRIMA shows potential for simulating the actual pothole water extents when compared against water areas obtained from remote sensing data. The use of different DEM resolution changes the resulting pothole water extent, especially for the small potholes as they are not detected in the coarse DEM. MESH-PRIMA can be considered as a hydraulic-hydrologic model that can be used for better understanding and accurate representation of the complex prairie hydrology.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Marcus A. Hardie ◽  
Richard B. Doyle ◽  
William E. Cotching ◽  
Shaun Lisson

Development-perched watertables and subsurface lateral flows in texture-contrast soils (duplex) are commonly believed to occur as a consequence of the hydraulic discontinuity between the A and B soil horizons. However, in catchments containing shallow bedrock, subsurface lateral flows result from a combination of preferential flow from the soil surface to the soil—bedrock interface, undulations in the bedrock topography, lateral flow through macropore networks at the soil—bedrock interface, and the influence of antecedent soil moisture on macropore connectivity. Review of literature indicates that some of these processes may also be involved in the development of subsurface lateral flow in texture contrast soils. However, the extent to which these mechanisms can be applied to texture contrast soils requires further field studies. Improved process understanding is required for modelling subsurface lateral flows in order to improve the management of waterlogging, drainage, salinity, and offsite agrochemicals movement.


2016 ◽  
Vol 28 (1) ◽  
pp. 283-293 ◽  
Author(s):  
Tomohiro Nishigaki ◽  
Soh Sugihara ◽  
Method Kilasara ◽  
Shinya Funakawa

2018 ◽  
Author(s):  
Md Abul Ehsan Bhuiyan ◽  
Efthymios I. Nikolopoulos ◽  
Emmanouil N. Anagnostou ◽  
Clement Albergel ◽  
Emanuel Dutra ◽  
...  

Abstract. This study focuses on the Iberian Peninsula and investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modelling, in global water resources reanalysis. Analysis is based on ensemble hydrologic simulations for a period spanning 11 years (2000–2010). To simulate the hydrological variables of surface runoff, subsurface runoff, and evapotranspiration, we used four land surface models—JULES (Joint UK Land Environment Simulator), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), SURFEX (Surface Externalisée), and HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land)—and one global hydrological model, WaterGAP3 (Water–Global Assessment and Prognosis). Simulations were carried out for five precipitation products—CMORPH, PERSIANN, 3B42 (V7), ECMWF reanalysis, and a machine learning-based blended product. As reference, we used a ground-based observation-driven precipitation dataset, named SAFRAN, available at 5 km/1  h resolution. We present relative performances of hydrologic variables for the different multi-model/multi-forcing scenarios. Overall, results reveal the complexity of the interaction between precipitation characteristics and different modelling schemes and show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure. Surface runoff is strongly sensitive to precipitation uncertainty and the degree of sensitivity depends significantly on the runoff generation scheme of each model examined. Evapotranspiration fluxes are comparatively less sensitive for this study region. Finally, our results suggest that there is no single model/forcing combination that can outperform all others consistently for all variables examined and thus reinforce the fact that there are significant benefits in exploring different model structures as part of the overall modelling approaches used for water resources applications.


Sign in / Sign up

Export Citation Format

Share Document