Strange Quark Matter Inside Neutron Stars

2017 ◽  
pp. 1423-1446
Author(s):  
Fridolin Weber
2010 ◽  
Vol 105 (14) ◽  
Author(s):  
M. Angeles Perez-Garcia ◽  
Joseph Silk ◽  
Jirina R. Stone

2007 ◽  
Vol 16 (02n03) ◽  
pp. 231-245 ◽  
Author(s):  
FRIDOLIN WEBER ◽  
ALEXANDER HO ◽  
RODRIGO P. NEGREIROS ◽  
PHILIP ROSENFIELD

It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is not accessible to relativistic heavy ion collision experiments.


2003 ◽  
Vol 214 ◽  
pp. 191-198 ◽  
Author(s):  
R. X. Xu

A pedagogical overview of strange quark matter and strange stars is presented. After a historical notation of the research and an introduction to quark matter, a major part is devoted to the physics and astrophysics of strange stars, with attention being paid to the possible ways by which neutron stars and strange stars can be distinguished in astrophysics. Recent possible evidence for bare strange stars is also discussed.


Particles ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 365-384 ◽  
Author(s):  
Henrique Gieg ◽  
Tim Dietrich ◽  
Maximiliano Ujevic

The gravitational wave and electromagnetic signatures connected to the merger of two neutron stars allow us to test the nature of matter at supranuclear densities. Since the Equation of State governing the interior of neutron stars is only loosely constrained, there is even the possibility that strange quark matter exists inside the core of neutron stars. We investigate how strange quark matter cores affect the binary neutron star coalescence by performing numerical relativity simulations. Interestingly, the strong phase transition can cause a reduction of the convergence order of the numerical schemes to first order if the numerical resolution is not high enough. Therefore, an additional challenge is added in producing high-quality gravitational wave templates for Equation of States with a strong phase transition. Focusing on one particular configuration of an equal mass configuration consistent with GW170817, we compute and discuss the associated gravitational wave signal and some of the electromagnetic counterparts connected to the merger of the two stars. We find that existing waveform approximants employed for the analysis of GW170817 allow describing this kind of systems within the numerical uncertainties, which, however, are several times larger than for pure hadronic Equation of States, which means that even higher resolutions have been employed for an accurate gravitational wave model comparison. We also show that for the chosen Equation of State, quasi-universal relations describing the gravitational wave emission after the moment of merger seem to hold and that the electromagnetic signatures connected to our chosen setup would not be bright enough to explain the kilonova associated to GW170817.


1997 ◽  
Vol 480 (2) ◽  
pp. L111-L114 ◽  
Author(s):  
Christoph Schaab ◽  
Bernd Hermann ◽  
Fridolin Weber ◽  
Manfred K. Weigel

2003 ◽  
Vol 30 (1) ◽  
pp. S471-S478 ◽  
Author(s):  
Markus H Thoma ◽  
Joachim Trümper ◽  
Vadim Burwitz

2011 ◽  
Vol 20 (supp02) ◽  
pp. 84-92 ◽  
Author(s):  
AURORA PÉREZ MARTíNEZ ◽  
RICARDO GONZÁLEZ FELIPE ◽  
DARYEL MANREZA PARET

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1427-1436 ◽  
Author(s):  
F. WEBER ◽  
O. HAMIL ◽  
K. MIMURA ◽  
R. NEGREIROS

This paper provides a short overview of the multifaceted, possible role of quark matter for compact stars (neutron stars and strange quark matter stars). We began with a variational investigation of the maximum possible energy densities in the cores of neutron stars. This is followed by a brief discussion of the possible existence of quark matter in the cores of neutron stars and how such matter could manifest itself in neutron star observables. The possible presence of color superconducting strange quark matter nuggets in the crusts of neutron stars is reviewed next, and their impact on the pycnonuclear reaction rates in the crusts of neutron stars is discussed. The second part of the paper discusses the impact of ultra-strong electric fields on the bulk properties of strange quark matter stars and presents results of a preliminary study that models the thermal evolution of radio-quiet, X-ray bright, central compact objects (CCOs).


Sign in / Sign up

Export Citation Format

Share Document