scholarly journals Highly Stretchable Miniature Strain Sensor for Large Strain Measurement

Author(s):  
Shurong Yao ◽  
Xu Nie ◽  
Xun Yu ◽  
Bo Song ◽  
Jill Blecke
2008 ◽  
Vol 147 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Yin-Nee Cheung ◽  
Yun Zhu ◽  
Ching-Hsiang Cheng ◽  
Chen Chao ◽  
Wallace Woon-Fong Leung

Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Ying Huang ◽  
Chao Hao ◽  
Jian Liu ◽  
Xiaohui Guo ◽  
Yangyang Zhang ◽  
...  

Purpose The purpose of this study is to present a highly stretchable and flexible strain sensor with simple and low cost of fabrication process and excellent dynamic characteristics, which make it suitable for human motion monitoring under large strain and high frequency. Design/methodology/approach The strain sensor was fabricated using the rubber/latex polymer as elastic carrier and single-walled carbon nanotubes (SWCNTs)/carbon black (CB) as a synergistic conductive network. The rubber/latex polymer was pre-treated in naphtha and then soaked in SWCNTs/CB/silicon rubber composite solution. The strain sensing and other performance of the sensor were measured and human motion tracking applications were tried. Findings These strain sensors based on aforementioned materials display high stretchability (500 per cent), excellent flexibility, fast response (approximately 45 ms), low creep (3.1 per cent at 100 per cent strain), temperature and humidity independence, superior stability and reproducibility during approximately 5,000 stretch/release cycles. Furthermore, the authors used these composites as human motion sensors, effectively monitoring joint motion, indicating that the stretchable strain sensor based on the rubber/latex polymer and the synergetic effects of mixed SWCNTs and CB could have promising applications in flexible and wearable devices for human motion tracking. Originality/value This paper presents a low-cost and a new type of strain sensor with excellent performance that can open up new fields of applications in flexible, stretchable and wearable electronics, especially in human motion tracking applications where very large strain should be accommodated by the strain sensor.


2017 ◽  
Vol 1 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Shulong Yao ◽  
Xu Nie ◽  
Xun Yu ◽  
Bo Song ◽  
Jill Blecke

2014 ◽  
Vol 530-531 ◽  
pp. 66-70
Author(s):  
Cheng Li Duan ◽  
Ya Dong Jiang ◽  
Hui Ling Tai ◽  
Li Jie Chen ◽  
Qi Dong Li ◽  
...  

In this paper, a novel large-strain sensor based on a dual planar capacitive structure has been developed. It has the capacity of large-strain measurement up to 200,000 με (0.2 ε). The change in strain causes a measurable transformation in the capacitance of the sensor by relative shift of the overlap area between two capacitive plates, one fixed (i.e. fixed plate) and the other one movable (i.e. movable plate), and is thus converted into a voltage signal by a read-out circuit module. The dual capacitor structure was designed for increasing the initial capacitance and improving the resolution of sensors compared with a single capacitor structure. The experimental results showed that the sensor had a linearity of 2.29% full scale (FS), a hysteresis error of 1.146%FS, repeatability of 0.226%FS and a resolution of 0.5%FS, suggesting excellent performance of the sensor.


Author(s):  
Hongyang Shi ◽  
Xinda Qi ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Chuan Wang ◽  
...  

Abstract This paper proposes a highly stretchable strain sensor using viscous conductive materials as resistive element and introduces a simple and economic fabrication process by encapsulating the conductive materials between two layers of silicone rubbers Ecoflex 00-30. The fabrication process of the strain sensor is presented, and the properties of the viscous conductive materials are studied. Characterization shows that the sensor with conductive gels, toothpastes, carbon paint, and carbon grease can sustain a maximum tensile strain of 200% and retain good repeatability, with a strain gauge factor of 2.0, 1.75, 3.0, and 7.5, respectively. Furthermore, strain sensors with graphite and carbon nanotubes mixed with conductive gels are fabricated to explore how to improve the gauge factor. With a focus on the most promising material, conductive carbon grease, cyclic stretching tests are conducted and show good repeatability at 100% strain for 100 cycles. Lastly, it is demonstrated that the stretchable strain sensor made of carbon grease is capable of measuring finger bending. With its easy and low-cost fabrication process, large strain detection range and good gauge factor, the conductive materials-based strain sensors are promising for future biomedical, wearable electronics and rehabilitation applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79114-79120 ◽  
Author(s):  
Yichun Ding ◽  
Jack Yang ◽  
Charles R. Tolle ◽  
Zhengtao Zhu

A highly stretchable and sensitive strain sensor assembled by embedding a free-standing electrospun carbon nanofibers (CNFs) mat in a polyurethane (PU) matrix shows a fast, stable, and reproducible response to strain up to 300%.


Sign in / Sign up

Export Citation Format

Share Document