The Investigation of a Novel Large-Strain Sensor Based on a Dual Capacitive Structure

2014 ◽  
Vol 530-531 ◽  
pp. 66-70
Author(s):  
Cheng Li Duan ◽  
Ya Dong Jiang ◽  
Hui Ling Tai ◽  
Li Jie Chen ◽  
Qi Dong Li ◽  
...  

In this paper, a novel large-strain sensor based on a dual planar capacitive structure has been developed. It has the capacity of large-strain measurement up to 200,000 με (0.2 ε). The change in strain causes a measurable transformation in the capacitance of the sensor by relative shift of the overlap area between two capacitive plates, one fixed (i.e. fixed plate) and the other one movable (i.e. movable plate), and is thus converted into a voltage signal by a read-out circuit module. The dual capacitor structure was designed for increasing the initial capacitance and improving the resolution of sensors compared with a single capacitor structure. The experimental results showed that the sensor had a linearity of 2.29% full scale (FS), a hysteresis error of 1.146%FS, repeatability of 0.226%FS and a resolution of 0.5%FS, suggesting excellent performance of the sensor.

2008 ◽  
Vol 147 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Yin-Nee Cheung ◽  
Yun Zhu ◽  
Ching-Hsiang Cheng ◽  
Chen Chao ◽  
Wallace Woon-Fong Leung

2021 ◽  
Vol 17 (1) ◽  
pp. e1008217
Author(s):  
Yohsuke Murase ◽  
Seung Ki Baek

Repeated interaction promotes cooperation among rational individuals under the shadow of future, but it is hard to maintain cooperation when a large number of error-prone individuals are involved. One way to construct a cooperative Nash equilibrium is to find a ‘friendly-rivalry’ strategy, which aims at full cooperation but never allows the co-players to be better off. Recently it has been shown that for the iterated Prisoner’s Dilemma in the presence of error, a friendly rival can be designed with the following five rules: Cooperate if everyone did, accept punishment for your own mistake, punish defection, recover cooperation if you find a chance, and defect in all the other circumstances. In this work, we construct such a friendly-rivalry strategy for the iterated n-person public-goods game by generalizing those five rules. The resulting strategy makes a decision with referring to the previous m = 2n − 1 rounds. A friendly-rivalry strategy for n = 2 inherently has evolutionary robustness in the sense that no mutant strategy has higher fixation probability in this population than that of a neutral mutant. Our evolutionary simulation indeed shows excellent performance of the proposed strategy in a broad range of environmental conditions when n = 2 and 3.


2010 ◽  
Vol 638-642 ◽  
pp. 1905-1910 ◽  
Author(s):  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Yuuji Kimura ◽  
Kaneaki Tsuzaki

The structural recrystallization mechanisms operating in an Fe – 27%Cr – 9% Ni dual-phase (ferrite-austenite) stainless steel after large strain processing to total strain of 4.4 were investigated in the temperature range of 400-700oC. The severe deformation resulted in the development of an ultrafine grained microstructure consisting of highly elongated grains/subgrains with transverse dimensions of 160 nm and 130 nm in ferrite and austenite, respectively. The annealing mechanism operating in ferrite phase was considered as continuous recrystallization, which involved recovery leading to the development of essentially polygonized microstructure. On the other hand, the mechanism of discontinuous nucleation took place at an early recrystallization stage in austenite phase.


2018 ◽  
Vol 19 (10) ◽  
pp. 3045 ◽  
Author(s):  
Takehito Kikuchi ◽  
Yusuke Kobayashi ◽  
Mika Kawai ◽  
Tetsu Mitsumata

Magnetorheological elastomers (MREs) are stimulus-responsive soft materials that consist of polymeric matrices and magnetic particles. In this study, large-strain response of MREs with 5 vol % of carbonyl iron (CI) particles is experimentally characterized for two different conditions: (1) shear deformation in a uniform magnetic field; and (2), compression in a heterogeneous uniaxial magnetic field. For condition (1), dynamic viscoelastic measurements were performed using a rheometer with a rotor disc and an electric magnet that generated a uniform magnetic field on disc-like material samples. For condition (2), on the other hand, three permanent magnets with different surface flux densities were used to generate a heterogeneous uniaxial magnetic field under cylindrical material samples. The experimental results were mathematically modeled, and the relationship between them was investigated. We also used finite-element method (FEM) software to estimate the uniaxial distributions of the magnetic field in the analyzed MREs for condition (2), and developed mathematical models to describe these phenomena. By using these practicable techniques, we established a simple macroscale model of the elastic properties of MREs under simple compression. We estimated the elastic properties of MREs in the small-strain regime (neo–Hookean model) and in the large-strain regime (Mooney–Rivlin model). The small-strain model explains the experimental results for strains under 5%. On the other hand, the large-strain model explains the experimental results for strains above 10%.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 241 ◽  
Author(s):  
Zang ◽  
Wang ◽  
Liu

Gas diffusivities of coal are not measured directly but are normally regressed by fitting mathematical diffusion models to fractional sorption data measured in sorption experiments. This paper firstly measured three fractional adsorption curves at various equilibrium pressures with the manometric method. The measured fractional adsorption curves were then modeled with one single-fitting-parameter (SFP) model and three triple-fitting-parameter (TFP) models. The modeling results showed that the TFP models were phenomenologically over-parameterized due to the usage of three fitting parameters, which may be excessive for curve fitting. The phenomenological over-parameterization resulted in multiple pressure-dependences of gas diffusivity for the TFP models. The TFP models should thus be carefully used. On the other hand, the dual-fitting-parameter (DFP) models also have excellent performance in curve fitting and can produce interpretable modeling results. The DFP models can be used as an alternative to the TFP model in the future.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050133
Author(s):  
Anas Fouad Ahmed ◽  
Mohammed Abdulmunem Ahmed ◽  
Hussain Mustafa Bierk

This paper introduces an efficient and robust method for heartbeat detection based on the calculated angles between the successive samples of electrocardiogram (ECG) signal. The proposed approach involves three stages: filtering, computing the angles of the signal and thresholding. The suggested method is applied to two different types of ECG databases (QTDB and MIT-BIH). The results were compared with the other algorithms suggested in previous works. The proposed approach outperformed the other algorithms, in spite of its simplicity and their fast calculations. These features make it applicable in real-time ECG diagnostics systems. The suggested method was implemented in real-time using a low cost ECG acquisition system and it shows excellent performance.


Sign in / Sign up

Export Citation Format

Share Document