A Niching Genetic Algorithm Including an Inbreeding Mechanism for Multimodal Problems

Author(s):  
Atsushi Ueno ◽  
Naoki Hagita ◽  
Tomohito Takubo
2014 ◽  
Vol 989-994 ◽  
pp. 2621-2624
Author(s):  
Shao Song Wan ◽  
Jian Cao ◽  
Qun Song Zhu

In order to resolve these problems, we put forward a new design of the intelligent lock which is mainly based on the technology of wireless sensor network. Particle swarm optimization (PSO) is a recently proposed intelligent algorithm which is motivated by swarm intelligence. PSO has been shown to perform well on many benchmark and real-world optimization problems; it easily falls into local optima when solving complex multimodal problems. To avoid the local optimization, the algorithm renews population and enhances the diversity of population by using density calculation of immune theory and adjusting new chaos sequence. The paper gives the circuit diagram of the hardware components based on single chip and describe how to design the software. The experimental results show that the immune genetic algorithm based on chaos theory can search the result of the optimization and evidently improve the convergent speed and astringency.


1997 ◽  
Vol 5 (1) ◽  
pp. 61-80 ◽  
Author(s):  
Shigeyoshi Tsutsui ◽  
Yoshiji Fujimoto ◽  
Ashish Ghosh

In this article, we propose a new type of genetic algorithm (GA), the forking GA (fGA), which divides the whole search space into subspaces, depending on the convergence status of the population and the solutions obtained so far. The fGA is intended to deal with multimodal problems that are difficult to solve using conventional GAs. We use a multi-population scheme that includes one parent population that explores one subspace and one or more child populations exploiting the other subspace. We consider two types of fGAs, depending on the method used to divide the search space. One is the genoqtypic fGA (g-fGA), which defines the search subspace for each subpopulation, depending on the salient schema within the genotypic search space. The other is the phenotypic fGA (p-fGA), which defines a search subspace by a neighborhood hypercube around the current best individual in the phenotypic feature space. Empirical results on complex function optimization problems show that both the g-fGA and the p-GA perform well compared to conventional GAs. Two additional utilities of the p-fGA are also studied briefly.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Sign in / Sign up

Export Citation Format

Share Document