scholarly journals Conceptual Design and Workspace Analysis of an Exechon-Inspired Parallel Kinematic Machine

Author(s):  
Tang Tengfei ◽  
Zhao Yanqin ◽  
Zhang Jun ◽  
Jin Yan
2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772413
Author(s):  
Teng-fei Tang ◽  
Jun Zhang

This article proposes two types of lockable spherical joints which can perform three different motion patters by locking or unlocking corresponding rotational axes. Based on the proposed lockable spherical joints, a general reconfigurable limb structure with two passive joints is designed with which the conceptual designs of two types of Exechon-like parallel kinematic machines are completed. To evaluate the stiffness of the proposed Exechon-like parallel kinematic machines, an expanded kinetostatic model is established by including the compliances of all joints and limb structures. The prediction accuracy of the expanded stiffness model is validated by numerical simulations. The comparative stiffness analyses prove that the Exe-Variant parallel kinematic machine claims competitive rigidity performance to the Exechon parallel kinematic machine. The present work can provide useful information for further investigations on structural enhancement, rigidity improvement, and dynamic analyses of other Exechon-like parallel kinematic machines.


2002 ◽  
Vol 26 (3) ◽  
pp. 337-346 ◽  
Author(s):  
Lihua Zhou ◽  
Tian Huang ◽  
Hanfried Kerle

A feasible way to estimate the stiffness of a 3-HSS parallel kinematic machine (PKM) by finite element analysis (FEA) is presented. Taking into consideration the base, columns, carriages struts and the mobile platform, a FEA model for the whole machine is established by solving such problems as match between different element types and simulation of moving components. Later on, this approach is applied to a particular 3-HSS PKM, Linapod, and used to steer the conceptual design of the machine. Furthermore, experiments are made on radial and axial stiffness. By comparison, the FE analytical results show good agreement with experimental data.


1999 ◽  
Author(s):  
Dan N. Centea ◽  
Herve Lacheray ◽  
Frederic Audren ◽  
Richard Teltz ◽  
Mohamed A. Elbestawi

Abstract The paper focuses on the TIARA Hexapod — a parallel kinematic machine tool that is being developed at McMaster University. The design uses fixed length struts, and an inclined layout for the motion axes that results in the mechanism resembling a ‘tiara’. In addition to the novelty of the design, these characteristics have several advantages from both a performance and economic perspective. The paper presents an overview of the development program for this machine tool, discussing issues related to design, modelling, inverse and forward kinematics, workspace, and dynamics analysis. Later sections of the paper detail the kinematic and dynamic models developed for the TIARA machine tool, and demonstrate their use for workspace analysis and the specification of actuator requirements.


1999 ◽  
Author(s):  
David S. Hardage ◽  
Gloria J. Wiens

Abstract This paper presents the results of a mini-modal survey on the Hexel Tornado 2000, a parallel kinematic machine tool located at Sandia National Laboratories, and discusses the finite element model that is used to simulate the structural dynamics of this machine. Preliminary data suggests a dependency of resonant frequency and stiffness characteristics on machine configuration.


Author(s):  
Madusudanan Sathia Narayanan ◽  
Sourish Chakravarty ◽  
Hrishi Shah ◽  
Venkat N. Krovi

This paper examines the symbolic kinematic modeling of a general 6-P-U-S (prismatic-universal-spherical) parallel kinematic manipulator (PKM). The base location of actuators has been previously shown to lead to: (i) reduction of the (motor) weight carried by the legs; (ii) elimination of the actuation transmission requirement (through intermediary joints as in the case of the Stewart-Gough platform); and (iii) most-importantly absorption of reaction-forces by the ground. We focus on using the symbolic equations to derive the conditions for type I and II singularities of this class of parallel manipulators. Based on these conditions, this system of equations is specialized to a specific configuration of the platform that has superior structural design and comparatively minimal singularities within its workspace. A series of studies were conducted to investigate the quality of workspace as well as estimate the actuation requirements for a unit payload carried over their workspace using the symbolic Jacobian model for this specialized configuration.


Sign in / Sign up

Export Citation Format

Share Document