Vision-Based Navigation Around Small Bodies

Author(s):  
Pawel Kicman ◽  
Jakub Lisowski ◽  
Ambroise Bidaux-Sokolowski
Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


2010 ◽  
Vol 18 (7) ◽  
pp. 789-799 ◽  
Author(s):  
Jonathan Courbon ◽  
Youcef Mezouar ◽  
Nicolas Guénard ◽  
Philippe Martinet

Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Walaa Elmasry ◽  
Yoko Kebukawa ◽  
Kensei Kobayashi

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.


2018 ◽  
Vol 14 (S345) ◽  
pp. 351-352
Author(s):  
Ernst A. Dorfi ◽  
Florian Ragossnig

AbstractDuring the early stages of planet formation accretion of small bodies add mass to the planet and deposit their energy kinetic energy. Caused by frictional heating and/or large stagnation pressures within the dense and extended atmospheres most of the in-falling bodies get destroyed by melting or break-up before they impact on the planet’s surface. The energy is added to the atmospheric layers rather than heating the planet directly. These processes can significantly alter the physical properties of protoplanets before they are exposed with their primordial atmospheres to the early stellar source when the protoplanetary disk becomes evaporated.


2012 ◽  
Vol 349 (2) ◽  
pp. 493-509 ◽  
Author(s):  
Zhang Zexu ◽  
Wang Weidong ◽  
Li Litao ◽  
Huang Xiangyu ◽  
Cui Hutao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document