High-Resolution Air Quality Forecasts with MOCAGE Chemistry Transport Model

Author(s):  
Mathieu Joly ◽  
Béatrice Josse ◽  
Matthieu Plu ◽  
Joaquim Arteta ◽  
Jonathan Guth ◽  
...  
2015 ◽  
Vol 15 (10) ◽  
pp. 5627-5644 ◽  
Author(s):  
G. Kuhlmann ◽  
Y. F. Lam ◽  
H. M. Cheung ◽  
A. Hartl ◽  
J. C. H. Fung ◽  
...  

Abstract. In this paper, we present the custom Hong Kong NO2 retrieval (HKOMI) for the Ozone Monitoring Instrument (OMI) on board the Aura satellite which was used to evaluate a high-resolution chemistry transport model (CTM) (3 km × 3 km spatial resolution). The atmospheric chemistry transport was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HKOMI NO2 retrieval, tropospheric air mass factors (AMFs) were recalculated using high-resolution ancillary parameters of surface reflectance, a priori NO2 and aerosol profiles, of which the latter two were taken from the CMAQ simulation. We tested the influence of the ancillary parameters on the data product using four different aerosol parametrizations. Ground-level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HKOMI retrieval increases estimated tropospheric NO2 vertical column densities (VCD) by (+31 ± 38)%, when compared to NASA's standard product (OMNO2-SP), and improves the normalized mean bias (NMB) between satellite and ground observations by 26 percentage points from −41 to −15%. The individual influences of the parameters are (+11.4 ± 13.4)% for NO2 profiles, (+11.0 ± 20.9)% for surface reflectance and (+6.0 ± 8.4)% for the best aerosol parametrization. The correlation coefficient r is low between ground and satellite observations (r = 0.35). The low r and the remaining NMB can be explained by the low model performance and the expected differences when comparing point measurements with area-averaged satellite observations. The correlation between CMAQ and the RAQM network is low (r ≈ 0.3) and the model underestimates the NO2 concentrations in the northwestern model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our best OMI NO2 data set (HKOMI-4). The model overestimates the NO2 VCDs by about 15% in Hong Kong and Shenzhen, while the correlation coefficient is satisfactory (r = 0.56). In Foshan and Guangzhou, the correlation is low (r = 0.37) and the model underestimates the VCDs strongly (NMB = −40%). In addition, we estimated that the OMI VCDs are also underestimated by about 10 to 20% in Foshan and Guangzhou because of the influence of the model parameters on the AMFs. In this study, we demonstrate that the HKOMI NO2 retrieval reduces the bias of the satellite observations and how the data set can be used to study the magnitude of NO2 concentrations in a regional model at high spatial resolution of 3 × 3 km2. The low bias was achieved with recalculated AMFs using updated surface reflectance, aerosol profiles and NO2 profiles. Since unbiased concentrations are important, for example, in air pollution studies, the results of this paper can be very helpful in future model evaluation studies.


2014 ◽  
Vol 14 (22) ◽  
pp. 31039-31090
Author(s):  
G. Kuhlmann ◽  
Y. F. Lam ◽  
H. M. Cheung ◽  
A. Hartl ◽  
J. C. H. Fung ◽  
...  

Abstract. In this paper, we evaluate a high-resolution chemistry transport model (CTM) (3 km x 3 km spatial resolution) with the new Hong Kong (HK) NO2 retrieval developed for the Ozone Monitoring Instrument (OMI) on-board the Aura satellite. The three-dimensional atmospheric chemistry was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HK NO2 retrieval, tropospheric air mass factors (AMF) were recalculated using high-resolution ancillary parameters of surface reflectance, NO2 profile shapes and aerosol profiles of which the latter two were taken from the CMAQ simulation. We also tested four different aerosol parametrizations. Ground level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HK NO2 retrieval increases the NO2 vertical column densities (VCD) by (+31 ± 38) %, when compared to NASA's standard product (SP2), and reduces the mean bias (MB) between satellite and ground measurements by 26 percentage points from −41 to −15 %. The correlation coefficient r is low for both satellite datasets (r = 0.35) due to the high spatial variability of NO2 concentrations. The correlation between CMAQ and the RAQM network is low (r ≈ 0.3) and the model underestimates the NO2 concentrations in the north-western model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our regional OMI NO2 product. The model overestimates the NO2 VCDs by about 15 % in Hong Kong and Shenzhen, while the correlation coefficient is satisfactory (r = 0.56). In Foshan and Guangzhou, the correlation is low (r = 0.37) and the model underestimates the VCDs strongly (MB = −40 %). In addition, we estimated that the OMI VCDs are also underestimated by about 10 to 20 % in Foshan and Guangzhou because of the influence of the model parameters on the AMF. In this study, we demonstrate that the HK OMI NO2 retrieval reduces the bias of the satellite measurements and thus the dataset can be used to study the magnitude of NO2 concentrations in a regional model. The low bias can be achieved if AMFs are recalculated with more accurate surface reflectance, aerosol profiles and NO2 profiles; only NO2 profiles have been replaced in earlier studies. Since unbiased concentrations are important, for example, in air pollution studies, the results of this paper can be very helpful in future model evaluation studies.


2012 ◽  
Vol 12 (8) ◽  
pp. 19371-19421 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The adoption of H2 internal combustion engines decreases tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and decreases those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States are expected to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector is adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic particularly in megacities with severe air-quality problems that are exacerbating.


2013 ◽  
Vol 6 (3) ◽  
pp. 4137-4187 ◽  
Author(s):  
E. Terrenoire ◽  
B. Bessagnet ◽  
L. Rouïl ◽  
F. Tognet ◽  
G. Pirovano ◽  
...  

Abstract. A high resolution air quality simulation (0.125° × 0.0625° horizontal resolution) performed over Europe for the year 2009 has been evaluated using both rural and urban background stations available over most of the domain. Using seasonal and yearly mean statistical indicators such as the correlation index, the fractional bias and the root mean squared error; we interpret objectively the performance of the simulation. Positive outcomes are: a very good reproduction of the daily variability at UB sites for O3 (R =0.73) as well as for NO2 (R =0.61); a very low bias calculated at UB stations for PM2.5 (FB = −6.4%) and PM10 concentrations (FB = −20.1%). Conversely, main weaknesses in model performance include: the underestimation of the NO2 daily maxima at UB site (FB = −53.6%); an overall underestimation of PM10 and PM2.5 concentrations observed over Eastern European countries (e.g. Poland); the overestimation of sulphates concentrations at spring time (FB = 53.7%); finally, over the year, total nitrate and ammonia concentrations are better reproduced than nitrate and ammonium aerosol phase compounds. Obtained results suggest that, in order to improve the model performances, efforts should focus on the improvement of the emission inventory quality for Eastern Europeans countries and the improvement of a specific parameterisation in the model to better account for the urban effect on meteorology and air pollutants concentrations.


2013 ◽  
Vol 13 (12) ◽  
pp. 5987-5998 ◽  
Author(s):  
S. Mailler ◽  
D. Khvorostyanov ◽  
L. Menut

Abstract. Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommendations, three others with vertical injection profiles derived from the EMEP recommendations but multiplying the injection height by 0.75, 0.50 and 0.25, respectively, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommendations leads to significantly improved simulation of background SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.


2013 ◽  
Vol 13 (2) ◽  
pp. 3663-3693
Author(s):  
S. Mailler ◽  
D. Khvorostyanov ◽  
L. Menut

Abstract. Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommandations, three others with vertical injection profiles derived from the EMEP recommandations but multiplying the injection height by respectively 0.75, 0.50 and 0.25, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommandations leads to significantly improved simulation of SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.


2021 ◽  
Author(s):  
Qing Mu ◽  
Bruce Rolstad Denby ◽  
Eivind Grøtting Wærsted ◽  
Hilde Fagerli

Abstract. The air quality downscaling model uEMEP and its combination with the EMEP MSC-W chemical transport model are used here to achieve high-resolution air quality modeling at street level in Europe. By using publicly available proxy data, this uEMEP/EMEP modelling system is applied to calculate annual mean NO2, PM2.5, PM10 and O3 concentrations for all of Europe down to 100 m resolution and is validated against all available Airbase monitoring stations in Europe at 25 m resolution. Downscaling is carried out on annual mean concentrations, requiring special attention to non-linear processes, such as NO2 chemistry, where frequency distributions are applied to better represent the non-linear NO2 chemistry. The downscaling shows significant improvement in NO2 concentrations where spatial correlation has been doubled for most countries and bias reduced from −46 % to −18 % for all stations in Europe. The downscaling of PM2.5 and PM10 does not show improvement in spatial correlation but does reduce the overall bias in the European calculations from −21 % to −11 % and from −39 % to −30 % for PM2.5 and PM10 respectively. There is improved spatial correlation in most countries after downscaling of O3, and a reduced positive bias of O3 concentrations from +16 % to +11 %. Sensitivity tests in Norway show that improvements in the emission and emission proxy data used for the downscaling can significantly improve both the NO2 and PM results. The downscaling development opens the way for improved exposure estimates, improved assessment of emissions as well as detailed calculations of source contributions to exceedances in a consistent way for all of Europe at high resolution.


2011 ◽  
Vol 45 (2) ◽  
pp. 485-492 ◽  
Author(s):  
Xiaoni Wang ◽  
Vivien Mallet ◽  
Jean-Paul Berroir ◽  
Isabelle Herlin

Sign in / Sign up

Export Citation Format

Share Document