Robust Muscle Cell Quantification Using Structured Edge Detection and Hierarchical Segmentation

Author(s):  
Fujun Liu ◽  
Fuyong Xing ◽  
Zizhao Zhang ◽  
Mason Mcgough ◽  
Lin Yang
Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
Michael K. Kundmann ◽  
Ondrej L. Krivanek

Parallel detection has greatly improved the elemental detection sensitivities attainable with EELS. An important element of this advance has been the development of differencing techniques which circumvent limitations imposed by the channel-to-channel gain variation of parallel detectors. The gain variation problem is particularly severe for detection of the subtle post-threshold structure comprising the EXELFS signal. Although correction techniques such as gain averaging or normalization can yield useful EXELFS signals, these are not ideal solutions. The former is a partial throwback to serial detection and the latter can only achieve partial correction because of detector cell inhomogeneities. We consider here the feasibility of using the difference method to efficiently and accurately measure the EXELFS signal.An important distinction between the edge-detection and EXELFS cases lies in the energy-space periodicities which comprise the two signals. Edge detection involves the near-edge structure and its well-defined, shortperiod (5-10 eV) oscillations. On the other hand, EXELFS has continuously changing long-period oscillations (∼10-100 eV).


2004 ◽  
Vol 171 (4S) ◽  
pp. 376-377
Author(s):  
Yongmu Zheng ◽  
Shaohua Chang ◽  
Alan J. Wein ◽  
Samuel Chacko ◽  
Michael E. DiSanto

Sign in / Sign up

Export Citation Format

Share Document